Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883820570> ?p ?o ?g. }
- W2883820570 endingPage "391" @default.
- W2883820570 startingPage "375" @default.
- W2883820570 abstract "Performing data augmentation for learning deep neural networks is well known to be important for training visual recognition systems. By artificially increasing the number of training examples, it helps reducing overfitting and improves generalization. For object detection, classical approaches for data augmentation consist of generating images obtained by basic geometrical transformations and color changes of original training images. In this work, we go one step further and leverage segmentation annotations to increase the number of object instances present on training data. For this approach to be successful, we show that modeling appropriately the visual context surrounding objects is crucial to place them in the right environment. Otherwise, we show that the previous strategy actually hurts. With our context model, we achieve significant mean average precision improvements when few labeled examples are available on the VOC’12 benchmark." @default.
- W2883820570 created "2018-08-03" @default.
- W2883820570 creator A5003458137 @default.
- W2883820570 creator A5045217258 @default.
- W2883820570 creator A5062817741 @default.
- W2883820570 date "2018-01-01" @default.
- W2883820570 modified "2023-10-18" @default.
- W2883820570 title "Modeling Visual Context Is Key to Augmenting Object Detection Datasets" @default.
- W2883820570 cites W1516887802 @default.
- W2883820570 cites W1536680647 @default.
- W2883820570 cites W1560380655 @default.
- W2883820570 cites W1591870335 @default.
- W2883820570 cites W1837140482 @default.
- W2883820570 cites W1861492603 @default.
- W2883820570 cites W1982522767 @default.
- W2883820570 cites W2031489346 @default.
- W2883820570 cites W2046589395 @default.
- W2883820570 cites W2117539524 @default.
- W2883820570 cites W2141364309 @default.
- W2883820570 cites W2159564241 @default.
- W2883820570 cites W2166761907 @default.
- W2883820570 cites W2168356304 @default.
- W2883820570 cites W2194775991 @default.
- W2883820570 cites W2288122362 @default.
- W2883820570 cites W2315410813 @default.
- W2883820570 cites W2343052201 @default.
- W2883820570 cites W2536208356 @default.
- W2883820570 cites W2962747122 @default.
- W2883820570 cites W2962759496 @default.
- W2883820570 cites W2962774998 @default.
- W2883820570 cites W2963037989 @default.
- W2883820570 cites W2963231598 @default.
- W2883820570 cites W2963237621 @default.
- W2883820570 cites W2963271314 @default.
- W2883820570 cites W2963351448 @default.
- W2883820570 cites W2963942586 @default.
- W2883820570 cites W2997095758 @default.
- W2883820570 cites W3004335748 @default.
- W2883820570 cites W3106250896 @default.
- W2883820570 doi "https://doi.org/10.1007/978-3-030-01258-8_23" @default.
- W2883820570 hasPublicationYear "2018" @default.
- W2883820570 type Work @default.
- W2883820570 sameAs 2883820570 @default.
- W2883820570 citedByCount "129" @default.
- W2883820570 countsByYear W28838205702018 @default.
- W2883820570 countsByYear W28838205702019 @default.
- W2883820570 countsByYear W28838205702020 @default.
- W2883820570 countsByYear W28838205702021 @default.
- W2883820570 countsByYear W28838205702022 @default.
- W2883820570 countsByYear W28838205702023 @default.
- W2883820570 crossrefType "book-chapter" @default.
- W2883820570 hasAuthorship W2883820570A5003458137 @default.
- W2883820570 hasAuthorship W2883820570A5045217258 @default.
- W2883820570 hasAuthorship W2883820570A5062817741 @default.
- W2883820570 hasBestOaLocation W28838205702 @default.
- W2883820570 hasConcept C108583219 @default.
- W2883820570 hasConcept C119857082 @default.
- W2883820570 hasConcept C13280743 @default.
- W2883820570 hasConcept C134306372 @default.
- W2883820570 hasConcept C151730666 @default.
- W2883820570 hasConcept C153083717 @default.
- W2883820570 hasConcept C153180895 @default.
- W2883820570 hasConcept C154945302 @default.
- W2883820570 hasConcept C177148314 @default.
- W2883820570 hasConcept C185798385 @default.
- W2883820570 hasConcept C205649164 @default.
- W2883820570 hasConcept C22019652 @default.
- W2883820570 hasConcept C26517878 @default.
- W2883820570 hasConcept C2776151529 @default.
- W2883820570 hasConcept C2779343474 @default.
- W2883820570 hasConcept C2781238097 @default.
- W2883820570 hasConcept C2984842247 @default.
- W2883820570 hasConcept C31972630 @default.
- W2883820570 hasConcept C33923547 @default.
- W2883820570 hasConcept C38652104 @default.
- W2883820570 hasConcept C41008148 @default.
- W2883820570 hasConcept C50644808 @default.
- W2883820570 hasConcept C86803240 @default.
- W2883820570 hasConcept C89600930 @default.
- W2883820570 hasConceptScore W2883820570C108583219 @default.
- W2883820570 hasConceptScore W2883820570C119857082 @default.
- W2883820570 hasConceptScore W2883820570C13280743 @default.
- W2883820570 hasConceptScore W2883820570C134306372 @default.
- W2883820570 hasConceptScore W2883820570C151730666 @default.
- W2883820570 hasConceptScore W2883820570C153083717 @default.
- W2883820570 hasConceptScore W2883820570C153180895 @default.
- W2883820570 hasConceptScore W2883820570C154945302 @default.
- W2883820570 hasConceptScore W2883820570C177148314 @default.
- W2883820570 hasConceptScore W2883820570C185798385 @default.
- W2883820570 hasConceptScore W2883820570C205649164 @default.
- W2883820570 hasConceptScore W2883820570C22019652 @default.
- W2883820570 hasConceptScore W2883820570C26517878 @default.
- W2883820570 hasConceptScore W2883820570C2776151529 @default.
- W2883820570 hasConceptScore W2883820570C2779343474 @default.
- W2883820570 hasConceptScore W2883820570C2781238097 @default.
- W2883820570 hasConceptScore W2883820570C2984842247 @default.
- W2883820570 hasConceptScore W2883820570C31972630 @default.
- W2883820570 hasConceptScore W2883820570C33923547 @default.