Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883833117> ?p ?o ?g. }
- W2883833117 abstract "Low-rank approximation plays an important role in many areas of science and engineering such as signal/image processing, machine learning, data mining, imaging, bioinformatics, pattern classification and computer vision because many real-world data exhibit low-rank property. This dissertation devises advanced algorithms for robust low-rank approximation of a single matrix as well as multiple matrices in the presence of outliers, where the conventional dimensionality reduction techniques such as the celebrated principal component analysis (PCA) are not applicable. The proposed methodology is based on minimizing the entry-wise $ell_p$-norm of the residual including the challenging nonconvex and nonsmooth case of $p<1$. Theoretical analyses are also presented. Extensive practical applications are discussed. Experimental results demonstrate that the superiority of the proposed methods over the state-of-the-art techniques.Two iterative algorithms are designed for low-rank approximation of a single matrix. The first is the iteratively reweighted singular value decomposition (IR-SVD), where the SVD of a reweighted matrix is performed at each iteration. The second converts the nonconvex $ell_p$-matrix factorization into a series of easily solvable $ell_p$-norm minimization with vectors being variables. Applications to image demixing,foreground detection in video surveillance, array signal processing, and direction-of-arrival estimation for source localization in impulsive noise are investigated.The low-rank approximation with missing values, i.e., robust matrix completion, is also addressed. Two algorithms are developed for it. The first iteratively solves a set of linear $ell_p$-regression problems while the second applies the alternating direction method of multipliers (ADMM) in the $ell_p$-space. At each iteration of the ADMM, it requires performing a least squares (LS) matrix factorization and calculating the proximity operator of the $p$th power of the $ell_p$-norm. The LS factorization is efficiently solved using linear LS regression while the proximity operator is obtained by root finding of a scalar nonlinear equation. The two proposed algorithms are scalable to the problem size. Applications to recommender systems, collaborative filtering, and image inpainting are provided.The $ell_p$-greedy pursuit ($ell_p$-GP) algorithms are devised for joint robust low-rank approximation of multiple matrices (RLRAMM) with outliers. The $ell_p$-GP with $0<p<2$ solves the RLRAMM by decomposing it into a series of rank-one approximations. At each iteration, it finds the best rank-one approximation by minimizing the $ell_p$-norm of the residual and then, the rank-one basis matrices are subtracted from the residual. A successive minimization approach is designed for the $ell_p$-rank-one fitting. Only weighted medians are required to compute for solving the most attractive case with $p=1$, yielding that the complexity is near-linear with the number and dimension of the matrices. Thus, the $ell_1$-GP is near-scalable to large-scale problems. The convergence of the $ell_p$-GP is theoretically proved. In particular, the sum of the $ell_p$-norms of the residuals decays exponentially. We reveal that the worst-case bound of the convergence rate is related to the $ell_p$-correlation of the residual and the current solution. The $ell_p$-GP has a higher compression ratio than the existing methods. For the special case of $p=2$, the orthogonal greedy pursuit (OGP) is further developed to accelerate the convergence, where the cost of weight re-computation is reduced by a recursive update manner. Tighter and more accurate bounds of the convergence rates are theoretically derived for $p=2$. Applications to data compression, robust image reconstruction and computer vision are provided." @default.
- W2883833117 created "2018-08-03" @default.
- W2883833117 creator A5049963367 @default.
- W2883833117 date "2018-07-08" @default.
- W2883833117 modified "2023-09-24" @default.
- W2883833117 title "Robust Low-Rank Approximation of Matrices in lp-Space" @default.
- W2883833117 cites W1691300750 @default.
- W2883833117 cites W2103560185 @default.
- W2883833117 cites W2111854674 @default.
- W2883833117 cites W2116148865 @default.
- W2883833117 cites W2127271355 @default.
- W2883833117 cites W2137800329 @default.
- W2883833117 cites W2140638323 @default.
- W2883833117 cites W2147329339 @default.
- W2883833117 cites W2151693816 @default.
- W2883833117 cites W2152116910 @default.
- W2883833117 cites W2158923808 @default.
- W2883833117 cites W2168745297 @default.
- W2883833117 cites W2183805236 @default.
- W2883833117 cites W2527399347 @default.
- W2883833117 cites W2574424311 @default.
- W2883833117 cites W3124442571 @default.
- W2883833117 cites W3141595720 @default.
- W2883833117 cites W3145128584 @default.
- W2883833117 cites W316798226 @default.
- W2883833117 cites W633772442 @default.
- W2883833117 cites W86299341 @default.
- W2883833117 hasPublicationYear "2018" @default.
- W2883833117 type Work @default.
- W2883833117 sameAs 2883833117 @default.
- W2883833117 citedByCount "0" @default.
- W2883833117 crossrefType "dissertation" @default.
- W2883833117 hasAuthorship W2883833117A5049963367 @default.
- W2883833117 hasConcept C106487976 @default.
- W2883833117 hasConcept C109282560 @default.
- W2883833117 hasConcept C11413529 @default.
- W2883833117 hasConcept C114614502 @default.
- W2883833117 hasConcept C121332964 @default.
- W2883833117 hasConcept C124066611 @default.
- W2883833117 hasConcept C134306372 @default.
- W2883833117 hasConcept C152671427 @default.
- W2883833117 hasConcept C154945302 @default.
- W2883833117 hasConcept C158693339 @default.
- W2883833117 hasConcept C159985019 @default.
- W2883833117 hasConcept C163716315 @default.
- W2883833117 hasConcept C164226766 @default.
- W2883833117 hasConcept C192562407 @default.
- W2883833117 hasConcept C22789450 @default.
- W2883833117 hasConcept C24252448 @default.
- W2883833117 hasConcept C25023664 @default.
- W2883833117 hasConcept C27438332 @default.
- W2883833117 hasConcept C2777749129 @default.
- W2883833117 hasConcept C2778459887 @default.
- W2883833117 hasConcept C33923547 @default.
- W2883833117 hasConcept C41008148 @default.
- W2883833117 hasConcept C42355184 @default.
- W2883833117 hasConcept C62520636 @default.
- W2883833117 hasConcept C70518039 @default.
- W2883833117 hasConcept C79337645 @default.
- W2883833117 hasConcept C90199385 @default.
- W2883833117 hasConcept C92207270 @default.
- W2883833117 hasConceptScore W2883833117C106487976 @default.
- W2883833117 hasConceptScore W2883833117C109282560 @default.
- W2883833117 hasConceptScore W2883833117C11413529 @default.
- W2883833117 hasConceptScore W2883833117C114614502 @default.
- W2883833117 hasConceptScore W2883833117C121332964 @default.
- W2883833117 hasConceptScore W2883833117C124066611 @default.
- W2883833117 hasConceptScore W2883833117C134306372 @default.
- W2883833117 hasConceptScore W2883833117C152671427 @default.
- W2883833117 hasConceptScore W2883833117C154945302 @default.
- W2883833117 hasConceptScore W2883833117C158693339 @default.
- W2883833117 hasConceptScore W2883833117C159985019 @default.
- W2883833117 hasConceptScore W2883833117C163716315 @default.
- W2883833117 hasConceptScore W2883833117C164226766 @default.
- W2883833117 hasConceptScore W2883833117C192562407 @default.
- W2883833117 hasConceptScore W2883833117C22789450 @default.
- W2883833117 hasConceptScore W2883833117C24252448 @default.
- W2883833117 hasConceptScore W2883833117C25023664 @default.
- W2883833117 hasConceptScore W2883833117C27438332 @default.
- W2883833117 hasConceptScore W2883833117C2777749129 @default.
- W2883833117 hasConceptScore W2883833117C2778459887 @default.
- W2883833117 hasConceptScore W2883833117C33923547 @default.
- W2883833117 hasConceptScore W2883833117C41008148 @default.
- W2883833117 hasConceptScore W2883833117C42355184 @default.
- W2883833117 hasConceptScore W2883833117C62520636 @default.
- W2883833117 hasConceptScore W2883833117C70518039 @default.
- W2883833117 hasConceptScore W2883833117C79337645 @default.
- W2883833117 hasConceptScore W2883833117C90199385 @default.
- W2883833117 hasConceptScore W2883833117C92207270 @default.
- W2883833117 hasLocation W28838331171 @default.
- W2883833117 hasOpenAccess W2883833117 @default.
- W2883833117 hasPrimaryLocation W28838331171 @default.
- W2883833117 hasRelatedWork W1995302825 @default.
- W2883833117 hasRelatedWork W2057590040 @default.
- W2883833117 hasRelatedWork W2136912397 @default.
- W2883833117 hasRelatedWork W2281981930 @default.
- W2883833117 hasRelatedWork W2371671679 @default.
- W2883833117 hasRelatedWork W2598601363 @default.
- W2883833117 hasRelatedWork W2789618714 @default.
- W2883833117 hasRelatedWork W2898726045 @default.