Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883857029> ?p ?o ?g. }
- W2883857029 endingPage "e5205" @default.
- W2883857029 startingPage "e5205" @default.
- W2883857029 abstract "Long-term and seasonal changes in production and respiration were surveyed in the Valle de Bravo reservoir, Mexico, in a period during which high water-level fluctuations occurred (2006–2015). We assessed the community metabolism through oxygen dynamics in this monomictic water-body affected by strong diurnal winds. The multiple-year data series allowed relationships with some environmental drivers to be identified, revealing that water level-fluctuations strongly influenced gross primary production and respiratory rates. Production and respiration changed mainly vertically, clearly in relation to light availability. Gross primary production ranged from 0.15 to 1.26 gO 2 m −2 h −1 , respiration rate from −0.13 to −0.83 gO 2 m −2 h −1 and net primary production from −0.36 to 0.66 gO 2 m −2 h −1 within the production layer, which had a mean depth of 5.9 m during the stratification periods and of 6.8 m during the circulations. The greater depth of the mixing layer allowed the consumption of oxygen below the production layer even during the stratifications, when it averaged 10.1 m. Respiration below the production layer ranged from −0.23 to −1.38 gO 2 m −2 h −1 . Vertically integrated metabolic rates (per unit area) showed their greatest variations at the intra-annual scale (stratification-circulation). Gross primary production and Secchi depth decreased as the mean water level decreased between stratification periods. VB is a highly productive ecosystem; its gross primary production averaged 3.60 gC m −2 d −1 during the 10 years sampled, a rate similar to that of hypertrophic systems. About 45% of this production, an annual average net carbon production of 599 g C m −2 year −1 , was exported to the hypolimnion, but on the average 58% of this net production was recycled through respiration below the production layer. Overall, only 19% of the carbon fixed in VB is buried in the sediments. Total ecosystem respiration rates averaged −6.89 gC m −2 d −1 during 2006–2015, doubling the gross production rates. The reservoir as a whole exhibited a net heterotrophic balance continuously during the decade sampled, which means it has likely been a net carbon source, potentially releasing an average of 3.29 gC m −2 d −1 to the atmosphere. These results are in accordance with recent findings that tropical eutrophic aquatic ecosystems can be stronger carbon sources than would be extrapolated from temperate systems, and can help guide future reassessments on the contribution of tropical lakes and reservoirs to carbon cycles at the global scale. Respiration was positively correlated with temperature both for the stratification periods and among the circulations, suggesting that the contribution of C to the atmosphere may increase as the reservoirs and lakes warm up owing to climate change and as their water level is reduced through intensification of their use as water sources." @default.
- W2883857029 created "2018-08-03" @default.
- W2883857029 creator A5007817675 @default.
- W2883857029 creator A5011450687 @default.
- W2883857029 creator A5054535704 @default.
- W2883857029 creator A5070309642 @default.
- W2883857029 creator A5085433117 @default.
- W2883857029 date "2018-07-17" @default.
- W2883857029 modified "2023-10-18" @default.
- W2883857029 title "Metabolism in a deep hypertrophic aquatic ecosystem with high water-level fluctuations: a decade of records confirms sustained net heterotrophy" @default.
- W2883857029 cites W123791346 @default.
- W2883857029 cites W1569749046 @default.
- W2883857029 cites W17582813 @default.
- W2883857029 cites W1959782412 @default.
- W2883857029 cites W1966508391 @default.
- W2883857029 cites W1966530876 @default.
- W2883857029 cites W1968749316 @default.
- W2883857029 cites W1973190049 @default.
- W2883857029 cites W1975989063 @default.
- W2883857029 cites W1976592792 @default.
- W2883857029 cites W1980592963 @default.
- W2883857029 cites W1987330656 @default.
- W2883857029 cites W1991105048 @default.
- W2883857029 cites W1995332687 @default.
- W2883857029 cites W1998042831 @default.
- W2883857029 cites W2006181084 @default.
- W2883857029 cites W2019333707 @default.
- W2883857029 cites W2030341219 @default.
- W2883857029 cites W2033355897 @default.
- W2883857029 cites W2040672339 @default.
- W2883857029 cites W2042423075 @default.
- W2883857029 cites W2043463872 @default.
- W2883857029 cites W2046075192 @default.
- W2883857029 cites W2047195157 @default.
- W2883857029 cites W2052283848 @default.
- W2883857029 cites W2054682103 @default.
- W2883857029 cites W2093027125 @default.
- W2883857029 cites W2093538022 @default.
- W2883857029 cites W2095408179 @default.
- W2883857029 cites W2096551264 @default.
- W2883857029 cites W2100468073 @default.
- W2883857029 cites W2104273838 @default.
- W2883857029 cites W2105866669 @default.
- W2883857029 cites W2108686678 @default.
- W2883857029 cites W2114964014 @default.
- W2883857029 cites W2117438222 @default.
- W2883857029 cites W2118904785 @default.
- W2883857029 cites W2122683742 @default.
- W2883857029 cites W2124257450 @default.
- W2883857029 cites W2137365825 @default.
- W2883857029 cites W2138196445 @default.
- W2883857029 cites W2139324602 @default.
- W2883857029 cites W2146773485 @default.
- W2883857029 cites W2150491439 @default.
- W2883857029 cites W2154908334 @default.
- W2883857029 cites W2227227452 @default.
- W2883857029 cites W2244159519 @default.
- W2883857029 cites W2333575771 @default.
- W2883857029 cites W2407679616 @default.
- W2883857029 cites W2606326228 @default.
- W2883857029 cites W26828749 @default.
- W2883857029 cites W2774432991 @default.
- W2883857029 cites W2777147541 @default.
- W2883857029 cites W2783956296 @default.
- W2883857029 cites W2793222464 @default.
- W2883857029 cites W4239658270 @default.
- W2883857029 cites W4246772887 @default.
- W2883857029 cites W63698303 @default.
- W2883857029 doi "https://doi.org/10.7717/peerj.5205" @default.
- W2883857029 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6054066" @default.
- W2883857029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30038862" @default.
- W2883857029 hasPublicationYear "2018" @default.
- W2883857029 type Work @default.
- W2883857029 sameAs 2883857029 @default.
- W2883857029 citedByCount "6" @default.
- W2883857029 countsByYear W28838570292019 @default.
- W2883857029 countsByYear W28838570292020 @default.
- W2883857029 countsByYear W28838570292021 @default.
- W2883857029 countsByYear W28838570292022 @default.
- W2883857029 countsByYear W28838570292023 @default.
- W2883857029 crossrefType "journal-article" @default.
- W2883857029 hasAuthorship W2883857029A5007817675 @default.
- W2883857029 hasAuthorship W2883857029A5011450687 @default.
- W2883857029 hasAuthorship W2883857029A5054535704 @default.
- W2883857029 hasAuthorship W2883857029A5070309642 @default.
- W2883857029 hasAuthorship W2883857029A5085433117 @default.
- W2883857029 hasBestOaLocation W28838570291 @default.
- W2883857029 hasConcept C100701293 @default.
- W2883857029 hasConcept C110872660 @default.
- W2883857029 hasConcept C127313418 @default.
- W2883857029 hasConcept C140793950 @default.
- W2883857029 hasConcept C182215343 @default.
- W2883857029 hasConcept C18903297 @default.
- W2883857029 hasConcept C192943249 @default.
- W2883857029 hasConcept C24717449 @default.
- W2883857029 hasConcept C2780207091 @default.
- W2883857029 hasConcept C3527866 @default.
- W2883857029 hasConcept C39432304 @default.