Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883948447> ?p ?o ?g. }
- W2883948447 endingPage "1225" @default.
- W2883948447 startingPage "1211" @default.
- W2883948447 abstract "Key points Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task‐dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control. Abstract A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter‐related mechanisms are necessary for flexion synergy expression: increased task‐dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post‐stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico‐reticulospinal pathways as an adaptive strategy that preserves low‐level motor control at the cost of fine motor control." @default.
- W2883948447 created "2018-08-03" @default.
- W2883948447 creator A5023366843 @default.
- W2883948447 creator A5050915751 @default.
- W2883948447 creator A5063951740 @default.
- W2883948447 creator A5072805240 @default.
- W2883948447 creator A5081925011 @default.
- W2883948447 creator A5082222907 @default.
- W2883948447 date "2018-02-19" @default.
- W2883948447 modified "2023-10-16" @default.
- W2883948447 title "Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke" @default.
- W2883948447 cites W1521385720 @default.
- W2883948447 cites W1892562891 @default.
- W2883948447 cites W1971544116 @default.
- W2883948447 cites W1971817567 @default.
- W2883948447 cites W1973168969 @default.
- W2883948447 cites W1974979702 @default.
- W2883948447 cites W1976182543 @default.
- W2883948447 cites W1982750178 @default.
- W2883948447 cites W1989363277 @default.
- W2883948447 cites W1990186496 @default.
- W2883948447 cites W1990542431 @default.
- W2883948447 cites W1991396150 @default.
- W2883948447 cites W1993947536 @default.
- W2883948447 cites W1993968723 @default.
- W2883948447 cites W2000749160 @default.
- W2883948447 cites W2005015906 @default.
- W2883948447 cites W2008204492 @default.
- W2883948447 cites W2008562930 @default.
- W2883948447 cites W2015758174 @default.
- W2883948447 cites W2022000096 @default.
- W2883948447 cites W2023997374 @default.
- W2883948447 cites W2026611744 @default.
- W2883948447 cites W2029683659 @default.
- W2883948447 cites W2030561821 @default.
- W2883948447 cites W2037365566 @default.
- W2883948447 cites W2037420423 @default.
- W2883948447 cites W2039734948 @default.
- W2883948447 cites W2045125028 @default.
- W2883948447 cites W2049649972 @default.
- W2883948447 cites W2051020258 @default.
- W2883948447 cites W2052025479 @default.
- W2883948447 cites W2059477553 @default.
- W2883948447 cites W2060569831 @default.
- W2883948447 cites W2062689759 @default.
- W2883948447 cites W2065347997 @default.
- W2883948447 cites W2071039248 @default.
- W2883948447 cites W2073633782 @default.
- W2883948447 cites W2077459723 @default.
- W2883948447 cites W2080127064 @default.
- W2883948447 cites W2085349629 @default.
- W2883948447 cites W2085408819 @default.
- W2883948447 cites W2085928963 @default.
- W2883948447 cites W2097743775 @default.
- W2883948447 cites W2101126957 @default.
- W2883948447 cites W2106666697 @default.
- W2883948447 cites W2109107402 @default.
- W2883948447 cites W2117597191 @default.
- W2883948447 cites W2118942146 @default.
- W2883948447 cites W2122626616 @default.
- W2883948447 cites W2125050249 @default.
- W2883948447 cites W2128080928 @default.
- W2883948447 cites W2133562983 @default.
- W2883948447 cites W2139855831 @default.
- W2883948447 cites W2140111053 @default.
- W2883948447 cites W2142445568 @default.
- W2883948447 cites W2143701627 @default.
- W2883948447 cites W2147551227 @default.
- W2883948447 cites W2171031282 @default.
- W2883948447 cites W2269393009 @default.
- W2883948447 cites W2285723163 @default.
- W2883948447 cites W2310691233 @default.
- W2883948447 cites W2341025093 @default.
- W2883948447 cites W2404088912 @default.
- W2883948447 cites W2414724435 @default.
- W2883948447 cites W2543743599 @default.
- W2883948447 cites W2594100767 @default.
- W2883948447 cites W2602091796 @default.
- W2883948447 cites W2625205863 @default.
- W2883948447 cites W2764413235 @default.
- W2883948447 cites W621190448 @default.
- W2883948447 cites W92671443 @default.
- W2883948447 doi "https://doi.org/10.1113/jp274968" @default.
- W2883948447 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5878212" @default.
- W2883948447 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29457651" @default.
- W2883948447 hasPublicationYear "2018" @default.
- W2883948447 type Work @default.
- W2883948447 sameAs 2883948447 @default.
- W2883948447 citedByCount "123" @default.
- W2883948447 countsByYear W28839484472018 @default.
- W2883948447 countsByYear W28839484472019 @default.
- W2883948447 countsByYear W28839484472020 @default.
- W2883948447 countsByYear W28839484472021 @default.
- W2883948447 countsByYear W28839484472022 @default.
- W2883948447 countsByYear W28839484472023 @default.
- W2883948447 crossrefType "journal-article" @default.
- W2883948447 hasAuthorship W2883948447A5023366843 @default.
- W2883948447 hasAuthorship W2883948447A5050915751 @default.