Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884097752> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2884097752 endingPage "1763" @default.
- W2884097752 startingPage "1763" @default.
- W2884097752 abstract "1763 Purpose: In nuclear medicine, Cobalt 57 flood sources are commonly used to check gamma camera detector uniformity. These 57Co flood sources typically have a small concentration of 56Co and 58Co impurities which can affect detector uniformity measurements due to their high energy photon emission as noted by E. B. Sokole et al (Eur. J. Nucl. Med, 1996 Vol 23, 437-442) and R. W. Cranage et al (Br. J. Radiol, 1979 Vol 52, 81-82). The influence of these high energy photons on the overall detector count rate can be seen by scanning in an energy window that includes these high energies per E. Busemann-Sokole et al (Rad. Prot. Dosimetry, 1995 Vol 57, 281-284). Since the half-lives of 56Co and 58Co (77.24 and 70.86 days respectively) are much shorter than the 57Co half-life (271.74 days), new flood sources may be “aged” for a period of time to allow the contaminants to decay and minimize their effect on detector uniformity measurements. Contaminants in these sources can be measured using PET/CT scanners using the methods of Frank P. DiFilippo (Med. Phys. 2014, Vol 41, 112502), but many clinical users of Co-57 sources do not have access to a PET/CT. The goal of this work was to determine an appropriate aging time for new 57Co sheet sources by a convenient method that is feasible in a clinical environment.Methods: Two newly-manufactured sheet sources were scanned on a Siemens E-Cam, with a 5/8” (coincidence/PET) crystal and LEHR collimator, using two energy windows, 122 keV, +/- 10% (57Co photopeak) and 200 - 600 keV, roughly every two weeks over a period of 4 months. The sources were centered between the two detectors approximately 10 cm from each and stop conditions were 41 million counts in any energy window. After each scan, the total counts in each window for each detector were recorded and the ratio of counts in the two energy windows was calculated and plotted over time. Uniformity was measured for the standard 57Co energy window using the Siemens Flood Uniformity tool. A sheet source with calibration date 780 days prior to the first scan date of the two new sheet sources was scanned using the same energy windows. Since 780 days is more than ten half-lives for 56Co and 58Co, it was assumed that the impurities in this source had completely decayed and the ratio of counts in the two energy windows represented the probable endpoint ratio for both new sources.Results: The ratio of counts in the two energy windows over time agreed with an exponential decay model with a calculated half-life of approximately 76 days, which reasonably agrees with the known half-lives for 56Co and 58Co. At the same time, the uniformity measurements showed an improvement over the first two months, then remained fairly stable for subsequent measurements. In this case, a 20% drop in the ratio of counts corresponds with stable uniformity measurements.Conclusions: A waiting period of approximately six weeks after the source’s labeled assay date is advisable before placing new 57Co sheet sources in service for daily QC. This corresponds to a counts ratio of 1:1 in the two energy windows for this camera configuration. A longer waiting period of approximately ten weeks may be advisable before using sources to perform detector calibration and other high-count applications. Sources may be placed in service after shorter periods depending upon uniformity acceptance criteria. Future work will validate the energy window method and count ratio criteria for other gamma camera models." @default.
- W2884097752 created "2018-08-03" @default.
- W2884097752 creator A5012255913 @default.
- W2884097752 creator A5078885568 @default.
- W2884097752 date "2018-05-01" @default.
- W2884097752 modified "2023-09-28" @default.
- W2884097752 title "Gamma camera-based method for acceptance of new cobalt-57 flood sources to minimize image nonuniformities from radionuclidic impurities" @default.
- W2884097752 hasPublicationYear "2018" @default.
- W2884097752 type Work @default.
- W2884097752 sameAs 2884097752 @default.
- W2884097752 citedByCount "0" @default.
- W2884097752 crossrefType "journal-article" @default.
- W2884097752 hasAuthorship W2884097752A5012255913 @default.
- W2884097752 hasAuthorship W2884097752A5078885568 @default.
- W2884097752 hasConcept C111337013 @default.
- W2884097752 hasConcept C120665830 @default.
- W2884097752 hasConcept C121332964 @default.
- W2884097752 hasConcept C142724271 @default.
- W2884097752 hasConcept C159317903 @default.
- W2884097752 hasConcept C177322064 @default.
- W2884097752 hasConcept C185544564 @default.
- W2884097752 hasConcept C185592680 @default.
- W2884097752 hasConcept C192562407 @default.
- W2884097752 hasConcept C204787440 @default.
- W2884097752 hasConcept C2779610220 @default.
- W2884097752 hasConcept C2779832538 @default.
- W2884097752 hasConcept C2989005 @default.
- W2884097752 hasConcept C62520636 @default.
- W2884097752 hasConcept C71924100 @default.
- W2884097752 hasConcept C71987851 @default.
- W2884097752 hasConcept C75088862 @default.
- W2884097752 hasConcept C77241059 @default.
- W2884097752 hasConcept C94915269 @default.
- W2884097752 hasConceptScore W2884097752C111337013 @default.
- W2884097752 hasConceptScore W2884097752C120665830 @default.
- W2884097752 hasConceptScore W2884097752C121332964 @default.
- W2884097752 hasConceptScore W2884097752C142724271 @default.
- W2884097752 hasConceptScore W2884097752C159317903 @default.
- W2884097752 hasConceptScore W2884097752C177322064 @default.
- W2884097752 hasConceptScore W2884097752C185544564 @default.
- W2884097752 hasConceptScore W2884097752C185592680 @default.
- W2884097752 hasConceptScore W2884097752C192562407 @default.
- W2884097752 hasConceptScore W2884097752C204787440 @default.
- W2884097752 hasConceptScore W2884097752C2779610220 @default.
- W2884097752 hasConceptScore W2884097752C2779832538 @default.
- W2884097752 hasConceptScore W2884097752C2989005 @default.
- W2884097752 hasConceptScore W2884097752C62520636 @default.
- W2884097752 hasConceptScore W2884097752C71924100 @default.
- W2884097752 hasConceptScore W2884097752C71987851 @default.
- W2884097752 hasConceptScore W2884097752C75088862 @default.
- W2884097752 hasConceptScore W2884097752C77241059 @default.
- W2884097752 hasConceptScore W2884097752C94915269 @default.
- W2884097752 hasLocation W28840977521 @default.
- W2884097752 hasOpenAccess W2884097752 @default.
- W2884097752 hasPrimaryLocation W28840977521 @default.
- W2884097752 hasRelatedWork W1194538013 @default.
- W2884097752 hasRelatedWork W1823187848 @default.
- W2884097752 hasRelatedWork W1964280159 @default.
- W2884097752 hasRelatedWork W1968506034 @default.
- W2884097752 hasRelatedWork W1973473252 @default.
- W2884097752 hasRelatedWork W2018579808 @default.
- W2884097752 hasRelatedWork W2063934887 @default.
- W2884097752 hasRelatedWork W2063963835 @default.
- W2884097752 hasRelatedWork W2070074837 @default.
- W2884097752 hasRelatedWork W2083400831 @default.
- W2884097752 hasRelatedWork W2087511858 @default.
- W2884097752 hasRelatedWork W236085113 @default.
- W2884097752 hasRelatedWork W2410927681 @default.
- W2884097752 hasRelatedWork W2768372865 @default.
- W2884097752 hasRelatedWork W2900267735 @default.
- W2884097752 hasRelatedWork W3020127072 @default.
- W2884097752 hasRelatedWork W158940555 @default.
- W2884097752 hasRelatedWork W2186198927 @default.
- W2884097752 hasRelatedWork W2830318219 @default.
- W2884097752 hasRelatedWork W2939422151 @default.
- W2884097752 hasVolume "59" @default.
- W2884097752 isParatext "false" @default.
- W2884097752 isRetracted "false" @default.
- W2884097752 magId "2884097752" @default.
- W2884097752 workType "article" @default.