Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884178717> ?p ?o ?g. }
- W2884178717 endingPage "661" @default.
- W2884178717 startingPage "655" @default.
- W2884178717 abstract "Models to predict tree survival and mortality can help to understand vegetation dynamics and to predict effects of climate change on native forests. The objective of the present study was to use Artificial Neural Networks, based on the competition index and climatic and categorical variables, to predict tree survival and mortality in Semideciduous Seasonal Forests in the Atlantic Forest biome. Numerical and categorical trees variables, in permanent plots, were used. The Agricultural Reference Index for Drought (ARID) and the distance-dependent competition index were the variables used. The overall efficiency of classification by ANNs was higher than 92% and 93% in the training and test, respectively. The accuracy for classification and number of surviving trees was above 99% in the test and in training for all ANNs. The classification accuracy of the number of dead trees was low. The mortality accuracy rate (10.96% for training and 13.76% for the test) was higher with the ANN 4, which considers the climatic variable and the competition index. The individual tree-level model integrates dendrometric and meteorological variables, representing a new step for modeling tree survival in the Atlantic Forest biome." @default.
- W2884178717 created "2018-08-03" @default.
- W2884178717 creator A5005493583 @default.
- W2884178717 creator A5015811832 @default.
- W2884178717 creator A5017091630 @default.
- W2884178717 creator A5020663840 @default.
- W2884178717 creator A5023560360 @default.
- W2884178717 creator A5026886454 @default.
- W2884178717 creator A5029120403 @default.
- W2884178717 creator A5033947235 @default.
- W2884178717 creator A5058602598 @default.
- W2884178717 creator A5063454454 @default.
- W2884178717 creator A5067330029 @default.
- W2884178717 date "2018-12-01" @default.
- W2884178717 modified "2023-10-06" @default.
- W2884178717 title "Artificial neural networks: Modeling tree survival and mortality in the Atlantic Forest biome in Brazil" @default.
- W2884178717 cites W1951564719 @default.
- W2884178717 cites W1973752964 @default.
- W2884178717 cites W1984286548 @default.
- W2884178717 cites W1996691427 @default.
- W2884178717 cites W1998048588 @default.
- W2884178717 cites W2005304001 @default.
- W2884178717 cites W2019191944 @default.
- W2884178717 cites W2027410694 @default.
- W2884178717 cites W2038157045 @default.
- W2884178717 cites W2070676234 @default.
- W2884178717 cites W2076304074 @default.
- W2884178717 cites W2088492895 @default.
- W2884178717 cites W2096061806 @default.
- W2884178717 cites W2104462056 @default.
- W2884178717 cites W2128032932 @default.
- W2884178717 cites W2134975353 @default.
- W2884178717 cites W2153524210 @default.
- W2884178717 cites W2161092052 @default.
- W2884178717 cites W2162348455 @default.
- W2884178717 cites W2299636802 @default.
- W2884178717 cites W2308111927 @default.
- W2884178717 cites W2416748893 @default.
- W2884178717 cites W2423748468 @default.
- W2884178717 cites W2476163281 @default.
- W2884178717 cites W2512743067 @default.
- W2884178717 cites W2530797269 @default.
- W2884178717 cites W2566496673 @default.
- W2884178717 cites W2576558324 @default.
- W2884178717 cites W2744288739 @default.
- W2884178717 cites W2744697371 @default.
- W2884178717 cites W2745102831 @default.
- W2884178717 cites W2751089949 @default.
- W2884178717 cites W2759761740 @default.
- W2884178717 cites W2773578505 @default.
- W2884178717 cites W2781478421 @default.
- W2884178717 cites W2791183459 @default.
- W2884178717 cites W2799602736 @default.
- W2884178717 cites W3124858585 @default.
- W2884178717 cites W769681550 @default.
- W2884178717 cites W881479310 @default.
- W2884178717 cites W922142870 @default.
- W2884178717 doi "https://doi.org/10.1016/j.scitotenv.2018.07.123" @default.
- W2884178717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30029140" @default.
- W2884178717 hasPublicationYear "2018" @default.
- W2884178717 type Work @default.
- W2884178717 sameAs 2884178717 @default.
- W2884178717 citedByCount "32" @default.
- W2884178717 countsByYear W28841787172019 @default.
- W2884178717 countsByYear W28841787172020 @default.
- W2884178717 countsByYear W28841787172021 @default.
- W2884178717 countsByYear W28841787172022 @default.
- W2884178717 countsByYear W28841787172023 @default.
- W2884178717 crossrefType "journal-article" @default.
- W2884178717 hasAuthorship W2884178717A5005493583 @default.
- W2884178717 hasAuthorship W2884178717A5015811832 @default.
- W2884178717 hasAuthorship W2884178717A5017091630 @default.
- W2884178717 hasAuthorship W2884178717A5020663840 @default.
- W2884178717 hasAuthorship W2884178717A5023560360 @default.
- W2884178717 hasAuthorship W2884178717A5026886454 @default.
- W2884178717 hasAuthorship W2884178717A5029120403 @default.
- W2884178717 hasAuthorship W2884178717A5033947235 @default.
- W2884178717 hasAuthorship W2884178717A5058602598 @default.
- W2884178717 hasAuthorship W2884178717A5063454454 @default.
- W2884178717 hasAuthorship W2884178717A5067330029 @default.
- W2884178717 hasBestOaLocation W28841787172 @default.
- W2884178717 hasConcept C105795698 @default.
- W2884178717 hasConcept C110872660 @default.
- W2884178717 hasConcept C113174947 @default.
- W2884178717 hasConcept C119857082 @default.
- W2884178717 hasConcept C134306372 @default.
- W2884178717 hasConcept C169258074 @default.
- W2884178717 hasConcept C18903297 @default.
- W2884178717 hasConcept C33923547 @default.
- W2884178717 hasConcept C39432304 @default.
- W2884178717 hasConcept C41008148 @default.
- W2884178717 hasConcept C50644808 @default.
- W2884178717 hasConcept C5274069 @default.
- W2884178717 hasConcept C86803240 @default.
- W2884178717 hasConcept C89920630 @default.
- W2884178717 hasConceptScore W2884178717C105795698 @default.
- W2884178717 hasConceptScore W2884178717C110872660 @default.
- W2884178717 hasConceptScore W2884178717C113174947 @default.