Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884205346> ?p ?o ?g. }
- W2884205346 endingPage "39" @default.
- W2884205346 startingPage "30" @default.
- W2884205346 abstract "Many chronic disorders have genomic etiology, disease progression, clinical presentation, and response to treatment that vary on a patient-to-patient basis. Such variability creates a need to identify characteristics within patient populations that have clinically relevant predictive value in order to advance personalized medicine. Unsupervised machine learning methods are suitable to address this type of problem, in which no a priori class label information is available to guide this search. However, it is challenging for existing methods to identify cluster memberships that are not just a result of natural sampling variation. Moreover, most of the current methods require researchers to provide specific input parameters a priori.This work presents an unsupervised machine learning method to cluster patients based on their genomic makeup without providing input parameters a priori. The method implements internal validity metrics to algorithmically identify the number of clusters, as well as statistical analyses to test for the significance of the results. Furthermore, the method takes advantage of the high degree of linkage disequilibrium between single nucleotide polymorphisms. Finally, a gene pathway analysis is performed to identify potential relationships between the clusters in the context of known biological knowledge.The method is tested with a cluster validation and a genomic dataset previously used in the literature. Benchmark results indicate that the proposed method provides the greatest performance out of the methods tested. Furthermore, the method is implemented on a sample genome-wide study dataset of 191 multiple sclerosis patients. The results indicate that the method was able to identify genetically distinct patient clusters without the need to select parameters a priori. Additionally, variants identified as significantly different between clusters are shown to be enriched for protein-protein interactions, especially in immune processes and cell adhesion pathways, via Gene Ontology term analysis.Once links are drawn between clusters and clinically relevant outcomes, Immunochip data can be used to classify high-risk and newly diagnosed chronic disease patients into known clusters for predictive value. Further investigation can extend beyond pathway analysis to evaluate these clusters for clinical significance of genetically related characteristics such as age of onset, disease course, heritability, and response to treatment." @default.
- W2884205346 created "2018-08-03" @default.
- W2884205346 creator A5018232256 @default.
- W2884205346 creator A5061664860 @default.
- W2884205346 creator A5065085077 @default.
- W2884205346 creator A5085425238 @default.
- W2884205346 date "2018-09-01" @default.
- W2884205346 modified "2023-10-03" @default.
- W2884205346 title "An unsupervised machine learning method for discovering patient clusters based on genetic signatures" @default.
- W2884205346 cites W1505191356 @default.
- W2884205346 cites W1548779692 @default.
- W2884205346 cites W1576743574 @default.
- W2884205346 cites W1891744697 @default.
- W2884205346 cites W1981016924 @default.
- W2884205346 cites W1987971958 @default.
- W2884205346 cites W1989277387 @default.
- W2884205346 cites W1992419399 @default.
- W2884205346 cites W1995450389 @default.
- W2884205346 cites W2007217012 @default.
- W2884205346 cites W2012196503 @default.
- W2884205346 cites W2024060531 @default.
- W2884205346 cites W2033403400 @default.
- W2884205346 cites W2044861245 @default.
- W2884205346 cites W2047555270 @default.
- W2884205346 cites W2056198580 @default.
- W2884205346 cites W2095867585 @default.
- W2884205346 cites W2096173332 @default.
- W2884205346 cites W2096766502 @default.
- W2884205346 cites W2098071274 @default.
- W2884205346 cites W2099607215 @default.
- W2884205346 cites W2101537465 @default.
- W2884205346 cites W2103017472 @default.
- W2884205346 cites W2105717378 @default.
- W2884205346 cites W2105883975 @default.
- W2884205346 cites W2109363337 @default.
- W2884205346 cites W2116868464 @default.
- W2884205346 cites W2119922327 @default.
- W2884205346 cites W2122863289 @default.
- W2884205346 cites W2123280311 @default.
- W2884205346 cites W2123794412 @default.
- W2884205346 cites W2131044977 @default.
- W2884205346 cites W2131249054 @default.
- W2884205346 cites W2135964318 @default.
- W2884205346 cites W2137799805 @default.
- W2884205346 cites W2144201419 @default.
- W2884205346 cites W2155723007 @default.
- W2884205346 cites W2158416439 @default.
- W2884205346 cites W2161633633 @default.
- W2884205346 cites W2162165991 @default.
- W2884205346 cites W2165232124 @default.
- W2884205346 cites W2165414252 @default.
- W2884205346 cites W2171975443 @default.
- W2884205346 cites W2221443338 @default.
- W2884205346 cites W2256359513 @default.
- W2884205346 cites W2262188337 @default.
- W2884205346 cites W2268134053 @default.
- W2884205346 cites W2294414050 @default.
- W2884205346 cites W2308360327 @default.
- W2884205346 cites W2312491920 @default.
- W2884205346 cites W2559588208 @default.
- W2884205346 cites W2562415598 @default.
- W2884205346 cites W2565943263 @default.
- W2884205346 cites W2604975863 @default.
- W2884205346 cites W2620529798 @default.
- W2884205346 cites W2727530286 @default.
- W2884205346 cites W2915536738 @default.
- W2884205346 cites W317995076 @default.
- W2884205346 cites W4242404314 @default.
- W2884205346 cites W4252676770 @default.
- W2884205346 cites W4255855797 @default.
- W2884205346 cites W575473521 @default.
- W2884205346 doi "https://doi.org/10.1016/j.jbi.2018.07.004" @default.
- W2884205346 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6621561" @default.
- W2884205346 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30016722" @default.
- W2884205346 hasPublicationYear "2018" @default.
- W2884205346 type Work @default.
- W2884205346 sameAs 2884205346 @default.
- W2884205346 citedByCount "61" @default.
- W2884205346 countsByYear W28842053462019 @default.
- W2884205346 countsByYear W28842053462020 @default.
- W2884205346 countsByYear W28842053462021 @default.
- W2884205346 countsByYear W28842053462022 @default.
- W2884205346 countsByYear W28842053462023 @default.
- W2884205346 crossrefType "journal-article" @default.
- W2884205346 hasAuthorship W2884205346A5018232256 @default.
- W2884205346 hasAuthorship W2884205346A5061664860 @default.
- W2884205346 hasAuthorship W2884205346A5065085077 @default.
- W2884205346 hasAuthorship W2884205346A5085425238 @default.
- W2884205346 hasBestOaLocation W28842053461 @default.
- W2884205346 hasConcept C111472728 @default.
- W2884205346 hasConcept C119857082 @default.
- W2884205346 hasConcept C124101348 @default.
- W2884205346 hasConcept C138885662 @default.
- W2884205346 hasConcept C151730666 @default.
- W2884205346 hasConcept C153180895 @default.
- W2884205346 hasConcept C154945302 @default.
- W2884205346 hasConcept C2779343474 @default.
- W2884205346 hasConcept C41008148 @default.