Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884205724> ?p ?o ?g. }
- W2884205724 endingPage "974" @default.
- W2884205724 startingPage "961" @default.
- W2884205724 abstract "Radio-frequency (RF) heating of soft biological tissues during electrosurgical procedures is a fast process that involves phase change through evaporation and transport of intra- and extra-cellular water, and where variations in physical properties with temperature and water content play significant role. Accurately predicting and capturing these effects would improve the modeling of temperature change in the tissue allowing the development of improved instrument design and better understanding of tissue damage and necrosis. Previous models based on the Pennes’ bioheat model neglect both evaporation and transport or consider evaporation through numerical correlations, however, do not account for changes in physical properties due to mass transport or phase change, nor capture the pressure increase due to evaporation within the tissue. While a porous media approach can capture the effects of evaporation, transport, pressure and changes in physical properties, the model assumes free diffusion of liquid and gas without a careful examination of assumptions on transport parameters in intact tissue resulting in significant under prediction of temperature. These different approaches have therefore been associated with errors in temperature prediction exceeding 20% when compared to experiments due to inaccuracies in capturing the effects of evaporation losses and transport. Here, we present a model of RF heating of hydrated soft tissue based on mixture theory where the multiphase nature of tissue is captured within a continuum thermomechanics framework, simultaneously considering the transport, deformation and phase change losses due to evaporation that occur during electrosurgical heating. The model predictions are validated against data obtained for in vivo ablation of porcine liver tissue at various power settings of the electrosurgical unit. The model is able to match the mean experimental temperature data with sharp gradients in the vicinity of the electrode during rapid low and high power ablation procedures with errors less than 7.9%. Additionally, the model is able to capture fast vaporization losses and the corresponding increase in pressure due to vapor buildup which have a significant effect on temperature prediction beyond 100 °C." @default.
- W2884205724 created "2018-08-03" @default.
- W2884205724 creator A5002740297 @default.
- W2884205724 creator A5012623968 @default.
- W2884205724 creator A5019256445 @default.
- W2884205724 creator A5061904937 @default.
- W2884205724 creator A5086378089 @default.
- W2884205724 date "2018-12-01" @default.
- W2884205724 modified "2023-10-17" @default.
- W2884205724 title "A continuum thermomechanical model of in vivo electrosurgical heating of hydrated soft biological tissues" @default.
- W2884205724 cites W1518157663 @default.
- W2884205724 cites W1769772448 @default.
- W2884205724 cites W1868619165 @default.
- W2884205724 cites W1892662038 @default.
- W2884205724 cites W1970973323 @default.
- W2884205724 cites W1971947204 @default.
- W2884205724 cites W1986320938 @default.
- W2884205724 cites W1987006935 @default.
- W2884205724 cites W1990857944 @default.
- W2884205724 cites W1994537168 @default.
- W2884205724 cites W1996513393 @default.
- W2884205724 cites W2002866569 @default.
- W2884205724 cites W2004141879 @default.
- W2884205724 cites W2010413546 @default.
- W2884205724 cites W2012404222 @default.
- W2884205724 cites W2013955162 @default.
- W2884205724 cites W2014771237 @default.
- W2884205724 cites W2022256671 @default.
- W2884205724 cites W2022981781 @default.
- W2884205724 cites W2024001544 @default.
- W2884205724 cites W2024977418 @default.
- W2884205724 cites W2025806713 @default.
- W2884205724 cites W2026671862 @default.
- W2884205724 cites W2026926036 @default.
- W2884205724 cites W2029303385 @default.
- W2884205724 cites W2029341128 @default.
- W2884205724 cites W2032368764 @default.
- W2884205724 cites W2036940693 @default.
- W2884205724 cites W2039244439 @default.
- W2884205724 cites W2039254108 @default.
- W2884205724 cites W2041780885 @default.
- W2884205724 cites W2042687872 @default.
- W2884205724 cites W2042765211 @default.
- W2884205724 cites W2044112937 @default.
- W2884205724 cites W2049625487 @default.
- W2884205724 cites W2050624061 @default.
- W2884205724 cites W2053344339 @default.
- W2884205724 cites W2054272442 @default.
- W2884205724 cites W2054355149 @default.
- W2884205724 cites W2055336729 @default.
- W2884205724 cites W2056651100 @default.
- W2884205724 cites W2061127056 @default.
- W2884205724 cites W2063587775 @default.
- W2884205724 cites W2064577401 @default.
- W2884205724 cites W2067672948 @default.
- W2884205724 cites W2069507394 @default.
- W2884205724 cites W2074215498 @default.
- W2884205724 cites W2074577186 @default.
- W2884205724 cites W2077967017 @default.
- W2884205724 cites W2080521437 @default.
- W2884205724 cites W2087484885 @default.
- W2884205724 cites W2098266560 @default.
- W2884205724 cites W2100203796 @default.
- W2884205724 cites W2106301252 @default.
- W2884205724 cites W2106498117 @default.
- W2884205724 cites W2109534037 @default.
- W2884205724 cites W2110353311 @default.
- W2884205724 cites W2111564493 @default.
- W2884205724 cites W2118530388 @default.
- W2884205724 cites W2123746079 @default.
- W2884205724 cites W2126517094 @default.
- W2884205724 cites W2135320140 @default.
- W2884205724 cites W2136177402 @default.
- W2884205724 cites W2138640789 @default.
- W2884205724 cites W2141572008 @default.
- W2884205724 cites W2146200498 @default.
- W2884205724 cites W2158653039 @default.
- W2884205724 cites W2169825306 @default.
- W2884205724 cites W2171293753 @default.
- W2884205724 cites W2468401435 @default.
- W2884205724 cites W2488174151 @default.
- W2884205724 cites W2776306966 @default.
- W2884205724 cites W4253538687 @default.
- W2884205724 cites W47504383 @default.
- W2884205724 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.006" @default.
- W2884205724 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6366672" @default.
- W2884205724 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30739950" @default.
- W2884205724 hasPublicationYear "2018" @default.
- W2884205724 type Work @default.
- W2884205724 sameAs 2884205724 @default.
- W2884205724 citedByCount "21" @default.
- W2884205724 countsByYear W28842057242019 @default.
- W2884205724 countsByYear W28842057242020 @default.
- W2884205724 countsByYear W28842057242021 @default.
- W2884205724 countsByYear W28842057242022 @default.
- W2884205724 countsByYear W28842057242023 @default.
- W2884205724 crossrefType "journal-article" @default.
- W2884205724 hasAuthorship W2884205724A5002740297 @default.