Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884258597> ?p ?o ?g. }
- W2884258597 endingPage "7444" @default.
- W2884258597 startingPage "7434" @default.
- W2884258597 abstract "Most discoveries in materials science have been made empirically, typically through one-variable-at-a-time (Edisonian) experimentation. The characteristics of materials-based systems are, however, neither simple nor uncorrelated. In a device such as an organic photovoltaic, for example, the level of complexity is high due to the sheer number of components and processing conditions, and thus, changing one variable can have multiple unforeseen effects due to their interconnectivity. Design of Experiments (DoE) is ideally suited for such multivariable analyses: by planning one's experiments as per the principles of DoE, one can test and optimize several variables simultaneously, thus accelerating the process of discovery and optimization while saving time and precious laboratory resources. When combined with machine learning, the consideration of one's data in this manner provides a different perspective for optimization and discovery, akin to climbing out of a narrow valley of serial (one-variable-at-a-time) experimentation, to a mountain ridge with a 360° view in all directions." @default.
- W2884258597 created "2018-08-03" @default.
- W2884258597 creator A5012967837 @default.
- W2884258597 creator A5017376122 @default.
- W2884258597 creator A5032580359 @default.
- W2884258597 creator A5048070823 @default.
- W2884258597 creator A5074590865 @default.
- W2884258597 creator A5074696645 @default.
- W2884258597 creator A5079064222 @default.
- W2884258597 date "2018-07-20" @default.
- W2884258597 modified "2023-10-16" @default.
- W2884258597 title "How To Optimize Materials and Devices <i>via</i> Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics" @default.
- W2884258597 cites W1563453094 @default.
- W2884258597 cites W1964357740 @default.
- W2884258597 cites W1981296117 @default.
- W2884258597 cites W2001474611 @default.
- W2884258597 cites W2013219470 @default.
- W2884258597 cites W2024760831 @default.
- W2884258597 cites W2028939215 @default.
- W2884258597 cites W2045293316 @default.
- W2884258597 cites W2060332933 @default.
- W2884258597 cites W2064247035 @default.
- W2884258597 cites W2070933068 @default.
- W2884258597 cites W2082420980 @default.
- W2884258597 cites W2084921267 @default.
- W2884258597 cites W2104708743 @default.
- W2884258597 cites W2109287274 @default.
- W2884258597 cites W2140741137 @default.
- W2884258597 cites W2140767804 @default.
- W2884258597 cites W2145860152 @default.
- W2884258597 cites W2156631498 @default.
- W2884258597 cites W2158767568 @default.
- W2884258597 cites W2211839632 @default.
- W2884258597 cites W2223208841 @default.
- W2884258597 cites W2232933599 @default.
- W2884258597 cites W2237440835 @default.
- W2884258597 cites W2281370366 @default.
- W2884258597 cites W2324978604 @default.
- W2884258597 cites W2337110853 @default.
- W2884258597 cites W2347129741 @default.
- W2884258597 cites W2383894479 @default.
- W2884258597 cites W2426109273 @default.
- W2884258597 cites W2432215141 @default.
- W2884258597 cites W2437064720 @default.
- W2884258597 cites W2461312660 @default.
- W2884258597 cites W2464725281 @default.
- W2884258597 cites W2468809213 @default.
- W2884258597 cites W2510169513 @default.
- W2884258597 cites W2516170420 @default.
- W2884258597 cites W2519483951 @default.
- W2884258597 cites W2520500207 @default.
- W2884258597 cites W2559836826 @default.
- W2884258597 cites W2593098623 @default.
- W2884258597 cites W2735362277 @default.
- W2884258597 cites W2758428769 @default.
- W2884258597 cites W2766362701 @default.
- W2884258597 cites W2768828389 @default.
- W2884258597 cites W2769239311 @default.
- W2884258597 cites W2771697124 @default.
- W2884258597 cites W2772378680 @default.
- W2884258597 cites W2775875763 @default.
- W2884258597 cites W2781840561 @default.
- W2884258597 cites W2789787743 @default.
- W2884258597 cites W2790991844 @default.
- W2884258597 cites W2791805976 @default.
- W2884258597 cites W2792783390 @default.
- W2884258597 cites W2793375291 @default.
- W2884258597 cites W2799915630 @default.
- W2884258597 cites W2801652167 @default.
- W2884258597 cites W2803016063 @default.
- W2884258597 cites W2804431384 @default.
- W2884258597 cites W2806681928 @default.
- W2884258597 cites W2963784900 @default.
- W2884258597 cites W336365082 @default.
- W2884258597 doi "https://doi.org/10.1021/acsnano.8b04726" @default.
- W2884258597 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30027732" @default.
- W2884258597 hasPublicationYear "2018" @default.
- W2884258597 type Work @default.
- W2884258597 sameAs 2884258597 @default.
- W2884258597 citedByCount "208" @default.
- W2884258597 countsByYear W28842585972018 @default.
- W2884258597 countsByYear W28842585972019 @default.
- W2884258597 countsByYear W28842585972020 @default.
- W2884258597 countsByYear W28842585972021 @default.
- W2884258597 countsByYear W28842585972022 @default.
- W2884258597 countsByYear W28842585972023 @default.
- W2884258597 crossrefType "journal-article" @default.
- W2884258597 hasAuthorship W2884258597A5012967837 @default.
- W2884258597 hasAuthorship W2884258597A5017376122 @default.
- W2884258597 hasAuthorship W2884258597A5032580359 @default.
- W2884258597 hasAuthorship W2884258597A5048070823 @default.
- W2884258597 hasAuthorship W2884258597A5074590865 @default.
- W2884258597 hasAuthorship W2884258597A5074696645 @default.
- W2884258597 hasAuthorship W2884258597A5079064222 @default.
- W2884258597 hasBestOaLocation W28842585971 @default.
- W2884258597 hasConcept C105795698 @default.
- W2884258597 hasConcept C111919701 @default.
- W2884258597 hasConcept C117312493 @default.