Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884290420> ?p ?o ?g. }
- W2884290420 endingPage "19" @default.
- W2884290420 startingPage "1" @default.
- W2884290420 abstract "Classification is the task of assigning objects to one of several predefined categories. However, developing a classification system is mostly hampered by the size of data. With the increase in the dimension of data, the chance of irrelevant, redundant, and noisy features or attributes also increases. Feature selection acts as a catalyst in reducing computation time and dimensionality, enhancing prediction performance or accuracy, and curtailing irrelevant or redundant data. The neuro-fuzzy approach is used for feature selection and classification with better insight by representing knowledge in symbolic forms. The neuro-fuzzy approach combines the merits of neural network and fuzzy logic to solve many complex machine learning problems. The objective of this article is to provide a generic introduction and a recent survey to neuro-fuzzy approaches for feature selection and classification in a wide area of machine learning problems. Some of the existing neuro-fuzzy models are also applied to standard datasets to demonstrate their applicability and performance." @default.
- W2884290420 created "2018-08-03" @default.
- W2884290420 creator A5027602634 @default.
- W2884290420 creator A5049789850 @default.
- W2884290420 creator A5059380819 @default.
- W2884290420 date "2019-01-01" @default.
- W2884290420 modified "2023-10-16" @default.
- W2884290420 title "Recent Neuro-Fuzzy Approaches for Feature Selection and Classification" @default.
- W2884290420 cites W1499593612 @default.
- W2884290420 cites W1893126667 @default.
- W2884290420 cites W1965896286 @default.
- W2884290420 cites W1970516534 @default.
- W2884290420 cites W1991132795 @default.
- W2884290420 cites W1995446722 @default.
- W2884290420 cites W2000066643 @default.
- W2884290420 cites W2006252838 @default.
- W2884290420 cites W2011174648 @default.
- W2884290420 cites W2015668472 @default.
- W2884290420 cites W2017337590 @default.
- W2884290420 cites W2019207321 @default.
- W2884290420 cites W2020329107 @default.
- W2884290420 cites W2026206052 @default.
- W2884290420 cites W2028880213 @default.
- W2884290420 cites W2031559584 @default.
- W2884290420 cites W2041530468 @default.
- W2884290420 cites W2060356635 @default.
- W2884290420 cites W2062301117 @default.
- W2884290420 cites W2064754122 @default.
- W2884290420 cites W2066533069 @default.
- W2884290420 cites W2083528810 @default.
- W2884290420 cites W2087853099 @default.
- W2884290420 cites W2100180615 @default.
- W2884290420 cites W2118561568 @default.
- W2884290420 cites W2123060977 @default.
- W2884290420 cites W2133462743 @default.
- W2884290420 cites W2136455426 @default.
- W2884290420 cites W2141614013 @default.
- W2884290420 cites W2142137407 @default.
- W2884290420 cites W2142835304 @default.
- W2884290420 cites W2143935103 @default.
- W2884290420 cites W2144534900 @default.
- W2884290420 cites W2148002238 @default.
- W2884290420 cites W2149772057 @default.
- W2884290420 cites W2153128045 @default.
- W2884290420 cites W2167101736 @default.
- W2884290420 cites W2201348143 @default.
- W2884290420 cites W2345004275 @default.
- W2884290420 cites W2514866068 @default.
- W2884290420 cites W4211007335 @default.
- W2884290420 doi "https://doi.org/10.4018/978-1-5225-5832-3.ch001" @default.
- W2884290420 hasPublicationYear "2019" @default.
- W2884290420 type Work @default.
- W2884290420 sameAs 2884290420 @default.
- W2884290420 citedByCount "2" @default.
- W2884290420 countsByYear W28842904202019 @default.
- W2884290420 countsByYear W28842904202020 @default.
- W2884290420 crossrefType "book-chapter" @default.
- W2884290420 hasAuthorship W2884290420A5027602634 @default.
- W2884290420 hasAuthorship W2884290420A5049789850 @default.
- W2884290420 hasAuthorship W2884290420A5059380819 @default.
- W2884290420 hasConcept C111030470 @default.
- W2884290420 hasConcept C119857082 @default.
- W2884290420 hasConcept C124101348 @default.
- W2884290420 hasConcept C127413603 @default.
- W2884290420 hasConcept C138885662 @default.
- W2884290420 hasConcept C148483581 @default.
- W2884290420 hasConcept C154945302 @default.
- W2884290420 hasConcept C195975749 @default.
- W2884290420 hasConcept C201995342 @default.
- W2884290420 hasConcept C202444582 @default.
- W2884290420 hasConcept C2776401178 @default.
- W2884290420 hasConcept C2780451532 @default.
- W2884290420 hasConcept C29470771 @default.
- W2884290420 hasConcept C33676613 @default.
- W2884290420 hasConcept C33923547 @default.
- W2884290420 hasConcept C41008148 @default.
- W2884290420 hasConcept C41895202 @default.
- W2884290420 hasConcept C50644808 @default.
- W2884290420 hasConcept C58166 @default.
- W2884290420 hasConcept C70518039 @default.
- W2884290420 hasConcept C81917197 @default.
- W2884290420 hasConceptScore W2884290420C111030470 @default.
- W2884290420 hasConceptScore W2884290420C119857082 @default.
- W2884290420 hasConceptScore W2884290420C124101348 @default.
- W2884290420 hasConceptScore W2884290420C127413603 @default.
- W2884290420 hasConceptScore W2884290420C138885662 @default.
- W2884290420 hasConceptScore W2884290420C148483581 @default.
- W2884290420 hasConceptScore W2884290420C154945302 @default.
- W2884290420 hasConceptScore W2884290420C195975749 @default.
- W2884290420 hasConceptScore W2884290420C201995342 @default.
- W2884290420 hasConceptScore W2884290420C202444582 @default.
- W2884290420 hasConceptScore W2884290420C2776401178 @default.
- W2884290420 hasConceptScore W2884290420C2780451532 @default.
- W2884290420 hasConceptScore W2884290420C29470771 @default.
- W2884290420 hasConceptScore W2884290420C33676613 @default.
- W2884290420 hasConceptScore W2884290420C33923547 @default.
- W2884290420 hasConceptScore W2884290420C41008148 @default.
- W2884290420 hasConceptScore W2884290420C41895202 @default.