Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884293505> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2884293505 abstract "Specific locations within the brain contain neurons which respond, by firing action potentials (spikes), when a sound is played in the ear of a person or animal. The number and timing of these spikes encodes information about the sound; this code is the basis for us perceiving and understanding the acoustic world around us. To understand how the brain processes sound, we must understand this code. The difficulty then lies in evaluating the unknown neural code. This thesis applies Machine Learning to evaluate auditory coding of dynamic sounds by spike trains, with datasets of varying complexity.In the first part, a battery of Machine Learning (ML) algorithms are used to evaluate modulation frequency coding from the neural response to amplitude-modulated sinusoids in cat Cochlear Nucleus spike train data. It is found on this recognition task that, whilst absolute performance levels depend on the types of algorithms, their performance relative to each other is the same on different types of neurons. Thus a single powerful classification algorithm is sufficient for evaluating neural codes. Similarly, different performance measures are useful in understanding differences between ML algorithms, but they shed little light on different neural coding strategies. In contrast, the features used for classification are crucial; e.g. Vector Strength does not provide an accurate measure of the information contained in spike timing. Overall, different types of neurons do not encode the same amount of amplitude-modulation information. This emphasises the value of using powerful Machine Learning methods applied to raw spike timing information.In the second part, a more ecological and heterogeneous set of sounds — speech — is used. The application of Hidden Markov Model based Automatic Speech Recognition (ASR) is tested within the constraints of an electrophysiological experiment. The findings suggest that a continuous digit recognition task is amenable to a physiology experiment: using only 10 minutes of simulated recording to train statistical models of phonemes, an accuracy of 70% could be achieved. This result jumps to about 85% when using 200 minutes worth of simulated data. Using a digit recognition framework is sufficient to examine the influence on the performance of different aspects of the size and nature of a neural population and the role of spike timing. Previous results suggest, however, that this accuracy would be reduced if experimental Inferior Colliculus data were used instead of a guinea-pig cochlear model. On the other hand, a fully-fledged continuous ASR task on a large vocabulary with many speakers may result in insufficient phoneme accuracy (∼40%) to base an auditory coding-related investigation on. Overall this suggests that complex ML algorithms such as ASR can nevertheless be practically used to assess neural coding of speech, with careful selection of features." @default.
- W2884293505 created "2018-08-03" @default.
- W2884293505 creator A5061546979 @default.
- W2884293505 date "2018-07-19" @default.
- W2884293505 modified "2023-09-23" @default.
- W2884293505 title "Machine learning for neural coding of sound envelopes: slithering from sinusoids to speech" @default.
- W2884293505 hasPublicationYear "2018" @default.
- W2884293505 type Work @default.
- W2884293505 sameAs 2884293505 @default.
- W2884293505 citedByCount "0" @default.
- W2884293505 crossrefType "dissertation" @default.
- W2884293505 hasAuthorship W2884293505A5061546979 @default.
- W2884293505 hasConcept C104317684 @default.
- W2884293505 hasConcept C105795698 @default.
- W2884293505 hasConcept C115903868 @default.
- W2884293505 hasConcept C153180895 @default.
- W2884293505 hasConcept C154945302 @default.
- W2884293505 hasConcept C179518139 @default.
- W2884293505 hasConcept C185592680 @default.
- W2884293505 hasConcept C2776502983 @default.
- W2884293505 hasConcept C2781390188 @default.
- W2884293505 hasConcept C28490314 @default.
- W2884293505 hasConcept C2909946758 @default.
- W2884293505 hasConcept C33923547 @default.
- W2884293505 hasConcept C41008148 @default.
- W2884293505 hasConcept C55493867 @default.
- W2884293505 hasConcept C66746571 @default.
- W2884293505 hasConcept C77637269 @default.
- W2884293505 hasConceptScore W2884293505C104317684 @default.
- W2884293505 hasConceptScore W2884293505C105795698 @default.
- W2884293505 hasConceptScore W2884293505C115903868 @default.
- W2884293505 hasConceptScore W2884293505C153180895 @default.
- W2884293505 hasConceptScore W2884293505C154945302 @default.
- W2884293505 hasConceptScore W2884293505C179518139 @default.
- W2884293505 hasConceptScore W2884293505C185592680 @default.
- W2884293505 hasConceptScore W2884293505C2776502983 @default.
- W2884293505 hasConceptScore W2884293505C2781390188 @default.
- W2884293505 hasConceptScore W2884293505C28490314 @default.
- W2884293505 hasConceptScore W2884293505C2909946758 @default.
- W2884293505 hasConceptScore W2884293505C33923547 @default.
- W2884293505 hasConceptScore W2884293505C41008148 @default.
- W2884293505 hasConceptScore W2884293505C55493867 @default.
- W2884293505 hasConceptScore W2884293505C66746571 @default.
- W2884293505 hasConceptScore W2884293505C77637269 @default.
- W2884293505 hasLocation W28842935051 @default.
- W2884293505 hasOpenAccess W2884293505 @default.
- W2884293505 hasPrimaryLocation W28842935051 @default.
- W2884293505 hasRelatedWork W143036209 @default.
- W2884293505 hasRelatedWork W1504988924 @default.
- W2884293505 hasRelatedWork W1586921771 @default.
- W2884293505 hasRelatedWork W1976999846 @default.
- W2884293505 hasRelatedWork W1979251363 @default.
- W2884293505 hasRelatedWork W2025415817 @default.
- W2884293505 hasRelatedWork W2087661010 @default.
- W2884293505 hasRelatedWork W2099959943 @default.
- W2884293505 hasRelatedWork W2103043773 @default.
- W2884293505 hasRelatedWork W2113030367 @default.
- W2884293505 hasRelatedWork W2113574411 @default.
- W2884293505 hasRelatedWork W2121296694 @default.
- W2884293505 hasRelatedWork W2158567876 @default.
- W2884293505 hasRelatedWork W2354605631 @default.
- W2884293505 hasRelatedWork W2964204253 @default.
- W2884293505 hasRelatedWork W2965355988 @default.
- W2884293505 hasRelatedWork W3026840772 @default.
- W2884293505 hasRelatedWork W3111732684 @default.
- W2884293505 hasRelatedWork W2091662666 @default.
- W2884293505 hasRelatedWork W2187180556 @default.
- W2884293505 isParatext "false" @default.
- W2884293505 isRetracted "false" @default.
- W2884293505 magId "2884293505" @default.
- W2884293505 workType "dissertation" @default.