Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884338472> ?p ?o ?g. }
- W2884338472 endingPage "4672" @default.
- W2884338472 startingPage "4667" @default.
- W2884338472 abstract "Optimizing force-field (FF) parameters to perform molecular dynamics (MD) simulations is a challenging and time-consuming process. We present a novel FF optimization framework that integrates MD simulations with particle swarm optimization (PSO) algorithm and artificial neural network (ANN). This new ANN-assisted PSO framework was used to develop transferable coarse-grained (CG) models for D2O and DMF as a proof of concept. The PSO algorithm was used to generate the set of input FF parameters for the MD simulations of the CG models of these solvents, which were optimized to reproduce their experimental properties. Herein, for the first time, a reverse approach was employed for on-the-fly training of the ANN model, where results (solvent properties) obtained from the MD simulations and their corresponding FF parameters were used as inputs and outputs, respectively. The ANN model was then required to predict a set of new FF parameters, which were tested for their ability to predict the desired experimental properties. This new framework can be extended to integrate any optimization algorithm with ANN and MD simulations to accelerate the FF development." @default.
- W2884338472 created "2018-08-03" @default.
- W2884338472 creator A5043558999 @default.
- W2884338472 creator A5049515996 @default.
- W2884338472 creator A5049569133 @default.
- W2884338472 creator A5085371954 @default.
- W2884338472 date "2018-07-19" @default.
- W2884338472 modified "2023-10-17" @default.
- W2884338472 title "Machine-Learned Coarse-Grained Models" @default.
- W2884338472 cites W1826576703 @default.
- W2884338472 cites W1917827718 @default.
- W2884338472 cites W1974231430 @default.
- W2884338472 cites W1977053243 @default.
- W2884338472 cites W1984379930 @default.
- W2884338472 cites W1998260904 @default.
- W2884338472 cites W2019649874 @default.
- W2884338472 cites W2025444507 @default.
- W2884338472 cites W2053270059 @default.
- W2884338472 cites W2056303958 @default.
- W2884338472 cites W2056629974 @default.
- W2884338472 cites W2060633636 @default.
- W2884338472 cites W2061179540 @default.
- W2884338472 cites W2072462334 @default.
- W2884338472 cites W2073765675 @default.
- W2884338472 cites W2074616700 @default.
- W2884338472 cites W2083415705 @default.
- W2884338472 cites W2094120550 @default.
- W2884338472 cites W2109364787 @default.
- W2884338472 cites W2125034904 @default.
- W2884338472 cites W2128873947 @default.
- W2884338472 cites W2150789776 @default.
- W2884338472 cites W2161371102 @default.
- W2884338472 cites W2319590591 @default.
- W2884338472 cites W2325376314 @default.
- W2884338472 cites W2333387462 @default.
- W2884338472 cites W2503343131 @default.
- W2884338472 cites W2530960271 @default.
- W2884338472 cites W2547447472 @default.
- W2884338472 cites W2585152223 @default.
- W2884338472 cites W2608227894 @default.
- W2884338472 cites W2742271598 @default.
- W2884338472 cites W2744546448 @default.
- W2884338472 cites W2761329292 @default.
- W2884338472 cites W2785166711 @default.
- W2884338472 cites W2788627723 @default.
- W2884338472 cites W2794716106 @default.
- W2884338472 doi "https://doi.org/10.1021/acs.jpclett.8b01416" @default.
- W2884338472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30024761" @default.
- W2884338472 hasPublicationYear "2018" @default.
- W2884338472 type Work @default.
- W2884338472 sameAs 2884338472 @default.
- W2884338472 citedByCount "47" @default.
- W2884338472 countsByYear W28843384722018 @default.
- W2884338472 countsByYear W28843384722019 @default.
- W2884338472 countsByYear W28843384722020 @default.
- W2884338472 countsByYear W28843384722021 @default.
- W2884338472 countsByYear W28843384722022 @default.
- W2884338472 countsByYear W28843384722023 @default.
- W2884338472 crossrefType "journal-article" @default.
- W2884338472 hasAuthorship W2884338472A5043558999 @default.
- W2884338472 hasAuthorship W2884338472A5049515996 @default.
- W2884338472 hasAuthorship W2884338472A5049569133 @default.
- W2884338472 hasAuthorship W2884338472A5085371954 @default.
- W2884338472 hasConcept C10803110 @default.
- W2884338472 hasConcept C111919701 @default.
- W2884338472 hasConcept C11413529 @default.
- W2884338472 hasConcept C126255220 @default.
- W2884338472 hasConcept C147597530 @default.
- W2884338472 hasConcept C154945302 @default.
- W2884338472 hasConcept C177264268 @default.
- W2884338472 hasConcept C185592680 @default.
- W2884338472 hasConcept C186060115 @default.
- W2884338472 hasConcept C199360897 @default.
- W2884338472 hasConcept C202444582 @default.
- W2884338472 hasConcept C2987595161 @default.
- W2884338472 hasConcept C33923547 @default.
- W2884338472 hasConcept C41008148 @default.
- W2884338472 hasConcept C50644808 @default.
- W2884338472 hasConcept C59593255 @default.
- W2884338472 hasConcept C85617194 @default.
- W2884338472 hasConcept C86803240 @default.
- W2884338472 hasConcept C9652623 @default.
- W2884338472 hasConcept C98045186 @default.
- W2884338472 hasConceptScore W2884338472C10803110 @default.
- W2884338472 hasConceptScore W2884338472C111919701 @default.
- W2884338472 hasConceptScore W2884338472C11413529 @default.
- W2884338472 hasConceptScore W2884338472C126255220 @default.
- W2884338472 hasConceptScore W2884338472C147597530 @default.
- W2884338472 hasConceptScore W2884338472C154945302 @default.
- W2884338472 hasConceptScore W2884338472C177264268 @default.
- W2884338472 hasConceptScore W2884338472C185592680 @default.
- W2884338472 hasConceptScore W2884338472C186060115 @default.
- W2884338472 hasConceptScore W2884338472C199360897 @default.
- W2884338472 hasConceptScore W2884338472C202444582 @default.
- W2884338472 hasConceptScore W2884338472C2987595161 @default.
- W2884338472 hasConceptScore W2884338472C33923547 @default.
- W2884338472 hasConceptScore W2884338472C41008148 @default.
- W2884338472 hasConceptScore W2884338472C50644808 @default.