Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884348957> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2884348957 endingPage "100" @default.
- W2884348957 startingPage "100" @default.
- W2884348957 abstract "Due to the complicated metabolism of mammalian cells, the corresponding dynamic mathematical models usually consist of large sets of differential and algebraic equations with a large number of parameters to be estimated. On the other hand, the measured data for estimating the model parameters are limited. Consequently, the parameter estimates may converge to a local minimum far from the optimal ones, especially when the initial guesses of the parameter values are poor. The methodology presented in this paper provides a systematic way for estimating parameters sequentially that generates better initial guesses for parameter estimation and improves the accuracy of the obtained metabolic model. The model parameters are first classified into four subsets of decreasing importance, based on the sensitivity of the model’s predictions on the parameters’ assumed values. The parameters in the most sensitive subset, typically a small fraction of the total, are estimated first. When estimating the remaining parameters with next most sensitive subset, the subsets of parameters with higher sensitivities are estimated again using their previously obtained optimal values as the initial guesses. The power of this sequential estimation approach is illustrated through a case study on the estimation of parameters in a dynamic model of CHO cell metabolism in fed-batch culture. We show that the sequential parameter estimation approach improves model accuracy and that using limited data to estimate low-sensitivity parameters can worsen model performance." @default.
- W2884348957 created "2018-08-03" @default.
- W2884348957 creator A5017777141 @default.
- W2884348957 creator A5055132024 @default.
- W2884348957 creator A5065898070 @default.
- W2884348957 creator A5087420269 @default.
- W2884348957 date "2018-07-24" @default.
- W2884348957 modified "2023-10-16" @default.
- W2884348957 title "Sequential Parameter Estimation for Mammalian Cell Model Based on In Silico Design of Experiments" @default.
- W2884348957 cites W1894835879 @default.
- W2884348957 cites W1967988563 @default.
- W2884348957 cites W1971536112 @default.
- W2884348957 cites W1971663243 @default.
- W2884348957 cites W2005893967 @default.
- W2884348957 cites W2029767409 @default.
- W2884348957 cites W2037862231 @default.
- W2884348957 cites W2058722848 @default.
- W2884348957 cites W2062075925 @default.
- W2884348957 cites W2071646337 @default.
- W2884348957 cites W2077779831 @default.
- W2884348957 cites W2082536486 @default.
- W2884348957 cites W2101589741 @default.
- W2884348957 cites W2124630954 @default.
- W2884348957 cites W2168648059 @default.
- W2884348957 cites W2320477252 @default.
- W2884348957 cites W2323068126 @default.
- W2884348957 cites W2792376584 @default.
- W2884348957 cites W4229574989 @default.
- W2884348957 doi "https://doi.org/10.3390/pr6080100" @default.
- W2884348957 hasPublicationYear "2018" @default.
- W2884348957 type Work @default.
- W2884348957 sameAs 2884348957 @default.
- W2884348957 citedByCount "9" @default.
- W2884348957 countsByYear W28843489572019 @default.
- W2884348957 countsByYear W28843489572020 @default.
- W2884348957 countsByYear W28843489572021 @default.
- W2884348957 countsByYear W28843489572022 @default.
- W2884348957 countsByYear W28843489572023 @default.
- W2884348957 crossrefType "journal-article" @default.
- W2884348957 hasAuthorship W2884348957A5017777141 @default.
- W2884348957 hasAuthorship W2884348957A5055132024 @default.
- W2884348957 hasAuthorship W2884348957A5065898070 @default.
- W2884348957 hasAuthorship W2884348957A5087420269 @default.
- W2884348957 hasBestOaLocation W28843489571 @default.
- W2884348957 hasConcept C105795698 @default.
- W2884348957 hasConcept C126255220 @default.
- W2884348957 hasConcept C127413603 @default.
- W2884348957 hasConcept C167928553 @default.
- W2884348957 hasConcept C186060115 @default.
- W2884348957 hasConcept C21200559 @default.
- W2884348957 hasConcept C24326235 @default.
- W2884348957 hasConcept C28826006 @default.
- W2884348957 hasConcept C2983447341 @default.
- W2884348957 hasConcept C33923547 @default.
- W2884348957 hasConcept C41008148 @default.
- W2884348957 hasConcept C86803240 @default.
- W2884348957 hasConceptScore W2884348957C105795698 @default.
- W2884348957 hasConceptScore W2884348957C126255220 @default.
- W2884348957 hasConceptScore W2884348957C127413603 @default.
- W2884348957 hasConceptScore W2884348957C167928553 @default.
- W2884348957 hasConceptScore W2884348957C186060115 @default.
- W2884348957 hasConceptScore W2884348957C21200559 @default.
- W2884348957 hasConceptScore W2884348957C24326235 @default.
- W2884348957 hasConceptScore W2884348957C28826006 @default.
- W2884348957 hasConceptScore W2884348957C2983447341 @default.
- W2884348957 hasConceptScore W2884348957C33923547 @default.
- W2884348957 hasConceptScore W2884348957C41008148 @default.
- W2884348957 hasConceptScore W2884348957C86803240 @default.
- W2884348957 hasIssue "8" @default.
- W2884348957 hasLocation W28843489571 @default.
- W2884348957 hasLocation W28843489572 @default.
- W2884348957 hasOpenAccess W2884348957 @default.
- W2884348957 hasPrimaryLocation W28843489571 @default.
- W2884348957 hasRelatedWork W2096118501 @default.
- W2884348957 hasRelatedWork W2113517853 @default.
- W2884348957 hasRelatedWork W2158874577 @default.
- W2884348957 hasRelatedWork W2232108652 @default.
- W2884348957 hasRelatedWork W2353089771 @default.
- W2884348957 hasRelatedWork W2358638043 @default.
- W2884348957 hasRelatedWork W2377442928 @default.
- W2884348957 hasRelatedWork W2787857227 @default.
- W2884348957 hasRelatedWork W3003465709 @default.
- W2884348957 hasRelatedWork W3006948849 @default.
- W2884348957 hasVolume "6" @default.
- W2884348957 isParatext "false" @default.
- W2884348957 isRetracted "false" @default.
- W2884348957 magId "2884348957" @default.
- W2884348957 workType "article" @default.