Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884366974> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2884366974 abstract "Fix a finite field k and let X be Drinfeld's Upper Half Space over k of dimension n. Let S be the polynomial ring over k in n+1 variables, let G be the algebraic k-group scheme associated with the general linear group of degree n+1 and let Y=Proj S. Fix an algebraic action of G on Y. In the first part of this thesis, the global sections F(X) on X of a G-equivariant vector bundle F on Y are considered as a G(k)-representation. Due to a theorem of Orlik (2008), the computation of F(X) essentially reduces to the computation of the local cohomologies of F on Y with support in a k-rational closed subvariety Z. This local cohomology is considered as a representation of a certain parabolic subgroup P of G which stabilizes Z resp. of its Levi subgroup L. Three types of descriptions of these local cohomology modules are given: In the case where F arises from a representation of the stabilizer of a chosen base point of Y, a very general result on the structure of the local cohomology of F on Y with support in Z as an L-module is translated from Orlik's results.For general F, an even coarser strucutre result is proved by using an affine projection of Y onto Y-Z. In particular, when F equals the structure sheaf or a sheaf of differential forms on Y (resp. a Serre twist of either sheaf), this result is made very precise. In the case where the graded S-module associated with F is generated in degrees <2, a higher divided power version of the distribution algebra of G is used to for a more conceptual approach to the description of the local cohomologies mentioned in terms of the unipotent radical of P. In the second part of this thesis, the rigid cohomology of X is computed in two ways. The first method proceeds by computation of the rigid cohomology of the complement of X in Y (which is projective itself, thus its rigid cohomology is simply the de Rham cohomology of an associated rigid-analytic tube). Then application of the associated long exact sequence for rigid cohomology with proper supports yields the rigid cohomology of X. The second method proceeds by direct computation of the direct limit of the de Rham cohomologies of a certain cofinal family of strict open neighborhoods of the tube of X in the ambient rigid-analytic projective space. The resulting cohomology formula has been known since 2007, when Grose-Klonne proved that it is the same as the one obtained from l-adic cohomology using different methods." @default.
- W2884366974 created "2018-08-03" @default.
- W2884366974 creator A5007031746 @default.
- W2884366974 date "2018-01-22" @default.
- W2884366974 modified "2023-09-23" @default.
- W2884366974 title "Equivariant Vector Bundles and Rigid Cohomology on Drinfeld's Upper Half Space over a Finite Field" @default.
- W2884366974 hasPublicationYear "2018" @default.
- W2884366974 type Work @default.
- W2884366974 sameAs 2884366974 @default.
- W2884366974 citedByCount "0" @default.
- W2884366974 crossrefType "journal-article" @default.
- W2884366974 hasAuthorship W2884366974A5007031746 @default.
- W2884366974 hasConcept C114614502 @default.
- W2884366974 hasConcept C171036898 @default.
- W2884366974 hasConcept C202444582 @default.
- W2884366974 hasConcept C33923547 @default.
- W2884366974 hasConcept C4017995 @default.
- W2884366974 hasConcept C72738302 @default.
- W2884366974 hasConcept C78606066 @default.
- W2884366974 hasConcept C95857938 @default.
- W2884366974 hasConceptScore W2884366974C114614502 @default.
- W2884366974 hasConceptScore W2884366974C171036898 @default.
- W2884366974 hasConceptScore W2884366974C202444582 @default.
- W2884366974 hasConceptScore W2884366974C33923547 @default.
- W2884366974 hasConceptScore W2884366974C4017995 @default.
- W2884366974 hasConceptScore W2884366974C72738302 @default.
- W2884366974 hasConceptScore W2884366974C78606066 @default.
- W2884366974 hasConceptScore W2884366974C95857938 @default.
- W2884366974 hasLocation W28843669741 @default.
- W2884366974 hasOpenAccess W2884366974 @default.
- W2884366974 hasPrimaryLocation W28843669741 @default.
- W2884366974 hasRelatedWork W1492624654 @default.
- W2884366974 hasRelatedWork W1575269949 @default.
- W2884366974 hasRelatedWork W1579856504 @default.
- W2884366974 hasRelatedWork W1647015849 @default.
- W2884366974 hasRelatedWork W1674243621 @default.
- W2884366974 hasRelatedWork W2006203605 @default.
- W2884366974 hasRelatedWork W2035241867 @default.
- W2884366974 hasRelatedWork W2037494186 @default.
- W2884366974 hasRelatedWork W2058330045 @default.
- W2884366974 hasRelatedWork W2087925989 @default.
- W2884366974 hasRelatedWork W2092611979 @default.
- W2884366974 hasRelatedWork W2147315104 @default.
- W2884366974 hasRelatedWork W231525872 @default.
- W2884366974 hasRelatedWork W2499160938 @default.
- W2884366974 hasRelatedWork W2949960622 @default.
- W2884366974 hasRelatedWork W2962719291 @default.
- W2884366974 hasRelatedWork W2975139729 @default.
- W2884366974 hasRelatedWork W3104444099 @default.
- W2884366974 hasRelatedWork W46661584 @default.
- W2884366974 hasRelatedWork W2288665361 @default.
- W2884366974 isParatext "false" @default.
- W2884366974 isRetracted "false" @default.
- W2884366974 magId "2884366974" @default.
- W2884366974 workType "article" @default.