Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884474920> ?p ?o ?g. }
- W2884474920 endingPage "496" @default.
- W2884474920 startingPage "482" @default.
- W2884474920 abstract "Forthcoming spaceborne imaging spectrometers will provide novel opportunities for mapping urban composition globally. To move from case studies for single cities towards comparative and more operational analyses, generalized models that may be transferred throughout space are desired. In this study, we investigated how single regression models can be spatially generalized for vegetation-impervious-soil (VIS) mapping across multiple cities. The combination of support vector regression (SVR) with synthetically mixed training data generated from spectral libraries was used for fraction mapping. We developed three local models based on separate spectral libraries from Berlin (Germany), Brussels (Belgium), and Santa Barbara (U.S.), and a generalized model based on a combined multi-site spectral library. To examine the performance and transferability of the generalized model compared to local models, we first applied all model variants to simulated Environmental Mapping and Analysis Program (EnMAP) data from the three cities that were represented in the models, i.e., known sites. Next, we transferred the models to two unknown sites not represented in the models, San Francisco Bay Area (U.S.) and Munich (Germany). In the first mapping constellation, results demonstrated that the generalized model was capable of accurately mapping VIS fractions across all three known sites. Average mean absolute errors (AV-MAEs) were 8.5, 12.2, and 11.0% for Berlin, Brussels, and Santa Barbara. The performance of the generalized model was very similar to the local models, with ∆AV-MAEs falling within a range of ±0.7%. A detailed assessment of fraction maps and class-wise accuracies confirmed that modeling errors related to remaining limitations of urban mapping based on optical remote sensing data rather than to the choice between a local or generalized model. For the second mapping constellation, the generalized model proved to be useful for mapping vegetation and impervious fractions in the unknown sites. MAEs for both cover types were 5.4 and 10.9% for the San Francisco Bay Area, and 6.3 and 15.4% for Munich. In contrast, the three local models were only found to have similar accuracies as the generalized model for one of the two sites or for individual VIS categories. Despite the enhanced transferability of the generalized model to the unknown sites, deficiencies remained for accurate soil mapping. MAEs were 22.4 and 12.3%, and high over - and underestimations were observed at the low and high end of the fraction range. These shortcomings indicated possible limitations of the spectral libraries to account for the spectral characteristics of soils in the unknown sites. Overall, we conclude that the combination of SVR and synthetically mixed training data generated from multi-site libraries constitutes a flexible modeling approach for generalized urban mapping across multiple cities." @default.
- W2884474920 created "2018-08-03" @default.
- W2884474920 creator A5015469539 @default.
- W2884474920 creator A5018065949 @default.
- W2884474920 creator A5019723166 @default.
- W2884474920 creator A5025016784 @default.
- W2884474920 creator A5041171844 @default.
- W2884474920 creator A5061712719 @default.
- W2884474920 creator A5070600924 @default.
- W2884474920 creator A5083335734 @default.
- W2884474920 creator A5089207573 @default.
- W2884474920 creator A5091439710 @default.
- W2884474920 date "2018-10-01" @default.
- W2884474920 modified "2023-10-16" @default.
- W2884474920 title "Generalizing machine learning regression models using multi-site spectral libraries for mapping vegetation-impervious-soil fractions across multiple cities" @default.
- W2884474920 cites W1524602475 @default.
- W2884474920 cites W1754365911 @default.
- W2884474920 cites W1755354073 @default.
- W2884474920 cites W1772504446 @default.
- W2884474920 cites W1829952814 @default.
- W2884474920 cites W1963772737 @default.
- W2884474920 cites W1964357740 @default.
- W2884474920 cites W1971876701 @default.
- W2884474920 cites W1983726893 @default.
- W2884474920 cites W1988797124 @default.
- W2884474920 cites W1990255627 @default.
- W2884474920 cites W1994604181 @default.
- W2884474920 cites W1999755207 @default.
- W2884474920 cites W2012831013 @default.
- W2884474920 cites W2012973015 @default.
- W2884474920 cites W2015620132 @default.
- W2884474920 cites W2037407881 @default.
- W2884474920 cites W2040617212 @default.
- W2884474920 cites W2042783301 @default.
- W2884474920 cites W2045692755 @default.
- W2884474920 cites W2049827513 @default.
- W2884474920 cites W2058891717 @default.
- W2884474920 cites W2075218710 @default.
- W2884474920 cites W2076306039 @default.
- W2884474920 cites W2080187203 @default.
- W2884474920 cites W2080239438 @default.
- W2884474920 cites W2081694572 @default.
- W2884474920 cites W2083016737 @default.
- W2884474920 cites W2083933193 @default.
- W2884474920 cites W2099508699 @default.
- W2884474920 cites W2104391405 @default.
- W2884474920 cites W2105428530 @default.
- W2884474920 cites W2107583574 @default.
- W2884474920 cites W2123907688 @default.
- W2884474920 cites W2124652809 @default.
- W2884474920 cites W2134213291 @default.
- W2884474920 cites W2141409967 @default.
- W2884474920 cites W2142167540 @default.
- W2884474920 cites W2144881411 @default.
- W2884474920 cites W2146062404 @default.
- W2884474920 cites W2151773573 @default.
- W2884474920 cites W2155863249 @default.
- W2884474920 cites W2156419436 @default.
- W2884474920 cites W2159411209 @default.
- W2884474920 cites W2159530395 @default.
- W2884474920 cites W2564765202 @default.
- W2884474920 cites W2575938705 @default.
- W2884474920 cites W2579936671 @default.
- W2884474920 cites W2607378407 @default.
- W2884474920 cites W2608860984 @default.
- W2884474920 cites W2622785154 @default.
- W2884474920 cites W2726622130 @default.
- W2884474920 cites W2743050954 @default.
- W2884474920 cites W2751042086 @default.
- W2884474920 cites W278157659 @default.
- W2884474920 cites W4212883601 @default.
- W2884474920 cites W2094013353 @default.
- W2884474920 doi "https://doi.org/10.1016/j.rse.2018.07.011" @default.
- W2884474920 hasPublicationYear "2018" @default.
- W2884474920 type Work @default.
- W2884474920 sameAs 2884474920 @default.
- W2884474920 citedByCount "30" @default.
- W2884474920 countsByYear W28844749202018 @default.
- W2884474920 countsByYear W28844749202019 @default.
- W2884474920 countsByYear W28844749202020 @default.
- W2884474920 countsByYear W28844749202021 @default.
- W2884474920 countsByYear W28844749202022 @default.
- W2884474920 countsByYear W28844749202023 @default.
- W2884474920 crossrefType "journal-article" @default.
- W2884474920 hasAuthorship W2884474920A5015469539 @default.
- W2884474920 hasAuthorship W2884474920A5018065949 @default.
- W2884474920 hasAuthorship W2884474920A5019723166 @default.
- W2884474920 hasAuthorship W2884474920A5025016784 @default.
- W2884474920 hasAuthorship W2884474920A5041171844 @default.
- W2884474920 hasAuthorship W2884474920A5061712719 @default.
- W2884474920 hasAuthorship W2884474920A5070600924 @default.
- W2884474920 hasAuthorship W2884474920A5083335734 @default.
- W2884474920 hasAuthorship W2884474920A5089207573 @default.
- W2884474920 hasAuthorship W2884474920A5091439710 @default.
- W2884474920 hasConcept C12267149 @default.
- W2884474920 hasConcept C142724271 @default.
- W2884474920 hasConcept C154945302 @default.
- W2884474920 hasConcept C159078339 @default.