Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884508733> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2884508733 endingPage "118" @default.
- W2884508733 startingPage "111" @default.
- W2884508733 abstract "Breast cancer is a complex disease and its effective treatment needs affordable diagnosis and subtyping signatures. While the use of machine learning approach in clinical computation biology is still in its infancy, the prevalent approach in identifying molecular biomarkers remains to be screening of all biomarkers by differential expression analysis. Many of these attempts used miRNAs expression data in breast cancer and amounted to the multitude of differentially expressed miRNAs in this cancer; hence, the minimal set of miRNA biomarkers to classify breast cancer is yet to be identified. Availability of diverse and vast amount of cancer datasets like The Cancer Genome Atlas facilitated the molecular profiling of patients' tumors and introduced new challenges like clinical grade interpretations from big data. In this study, miRNA expression dataset of breast cancer patients from TCGA database was used to develop prediction models from which miRNA biomarkers were identified for diagnosis and molecular subtyping of this cancer. I took the advantage of interpretability of tree-based classification models to extract their rules and identify minimal set of biomarkers in this cancer. Empirical negative control miRNAs in breast cancer obtained and used to normalize the dataset. Tree-based machine learning models trained in my analysis used hsa-miR-139 with hsa-miR-183 to classify breast tumors from normal samples, and hsa-miR4728 with hsa-miR190b to further classify these tumors into three major subtypes of breast cancer. In addition to the proposed biomarkers, the most important miRNAs in breast cancer classification were also presented." @default.
- W2884508733 created "2018-08-03" @default.
- W2884508733 creator A5037240881 @default.
- W2884508733 date "2018-11-01" @default.
- W2884508733 modified "2023-10-12" @default.
- W2884508733 title "Tree-based machine learning algorithms identified minimal set of miRNA biomarkers for breast cancer diagnosis and molecular subtyping" @default.
- W2884508733 cites W1596810178 @default.
- W2884508733 cites W1797628932 @default.
- W2884508733 cites W1966149828 @default.
- W2884508733 cites W2008521392 @default.
- W2884508733 cites W2020541351 @default.
- W2884508733 cites W2029866800 @default.
- W2884508733 cites W2039521726 @default.
- W2884508733 cites W2087971080 @default.
- W2884508733 cites W2096192437 @default.
- W2884508733 cites W2111471857 @default.
- W2884508733 cites W2119975486 @default.
- W2884508733 cites W2132619562 @default.
- W2884508733 cites W2132996843 @default.
- W2884508733 cites W2137111266 @default.
- W2884508733 cites W2158485828 @default.
- W2884508733 cites W2160697532 @default.
- W2884508733 cites W2162880502 @default.
- W2884508733 cites W2179438025 @default.
- W2884508733 cites W2187387883 @default.
- W2884508733 cites W2214724576 @default.
- W2884508733 cites W2230320310 @default.
- W2884508733 cites W2270571558 @default.
- W2884508733 cites W2487143828 @default.
- W2884508733 cites W2551660834 @default.
- W2884508733 cites W2767081609 @default.
- W2884508733 cites W840861454 @default.
- W2884508733 doi "https://doi.org/10.1016/j.gene.2018.07.057" @default.
- W2884508733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30055304" @default.
- W2884508733 hasPublicationYear "2018" @default.
- W2884508733 type Work @default.
- W2884508733 sameAs 2884508733 @default.
- W2884508733 citedByCount "36" @default.
- W2884508733 countsByYear W28845087332018 @default.
- W2884508733 countsByYear W28845087332019 @default.
- W2884508733 countsByYear W28845087332020 @default.
- W2884508733 countsByYear W28845087332021 @default.
- W2884508733 countsByYear W28845087332022 @default.
- W2884508733 countsByYear W28845087332023 @default.
- W2884508733 crossrefType "journal-article" @default.
- W2884508733 hasAuthorship W2884508733A5037240881 @default.
- W2884508733 hasConcept C104317684 @default.
- W2884508733 hasConcept C119857082 @default.
- W2884508733 hasConcept C121608353 @default.
- W2884508733 hasConcept C145059251 @default.
- W2884508733 hasConcept C199360897 @default.
- W2884508733 hasConcept C2781067378 @default.
- W2884508733 hasConcept C41008148 @default.
- W2884508733 hasConcept C530470458 @default.
- W2884508733 hasConcept C54355233 @default.
- W2884508733 hasConcept C60644358 @default.
- W2884508733 hasConcept C70721500 @default.
- W2884508733 hasConcept C83852419 @default.
- W2884508733 hasConcept C86803240 @default.
- W2884508733 hasConceptScore W2884508733C104317684 @default.
- W2884508733 hasConceptScore W2884508733C119857082 @default.
- W2884508733 hasConceptScore W2884508733C121608353 @default.
- W2884508733 hasConceptScore W2884508733C145059251 @default.
- W2884508733 hasConceptScore W2884508733C199360897 @default.
- W2884508733 hasConceptScore W2884508733C2781067378 @default.
- W2884508733 hasConceptScore W2884508733C41008148 @default.
- W2884508733 hasConceptScore W2884508733C530470458 @default.
- W2884508733 hasConceptScore W2884508733C54355233 @default.
- W2884508733 hasConceptScore W2884508733C60644358 @default.
- W2884508733 hasConceptScore W2884508733C70721500 @default.
- W2884508733 hasConceptScore W2884508733C83852419 @default.
- W2884508733 hasConceptScore W2884508733C86803240 @default.
- W2884508733 hasLocation W28845087331 @default.
- W2884508733 hasLocation W28845087332 @default.
- W2884508733 hasOpenAccess W2884508733 @default.
- W2884508733 hasPrimaryLocation W28845087331 @default.
- W2884508733 hasRelatedWork W1986582023 @default.
- W2884508733 hasRelatedWork W2559322763 @default.
- W2884508733 hasRelatedWork W2594860815 @default.
- W2884508733 hasRelatedWork W2805745868 @default.
- W2884508733 hasRelatedWork W2883749686 @default.
- W2884508733 hasRelatedWork W3087349683 @default.
- W2884508733 hasRelatedWork W3102363003 @default.
- W2884508733 hasRelatedWork W3191462603 @default.
- W2884508733 hasRelatedWork W4285317557 @default.
- W2884508733 hasRelatedWork W4385767940 @default.
- W2884508733 hasVolume "677" @default.
- W2884508733 isParatext "false" @default.
- W2884508733 isRetracted "false" @default.
- W2884508733 magId "2884508733" @default.
- W2884508733 workType "article" @default.