Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884566142> ?p ?o ?g. }
- W2884566142 endingPage "2287" @default.
- W2884566142 startingPage "2287" @default.
- W2884566142 abstract "Recently, short-term traffic prediction under conditions with corrupted or missing data has become a popular topic. Since a road section has predictive power regarding the adjacent roads at a specific location, this paper proposes a novel hybrid convolutional long short-term memory neural network model based on critical road sections (CRS-ConvLSTM NN) to predict the traffic evolution of global networks. The critical road sections that have the most powerful impact on the subnetwork are identified by a spatiotemporal correlation algorithm. Subsequently, the traffic speed of the critical road sections is used as the input to the ConvLSTM to predict the future traffic states of the entire network. The experimental results from a Beijing traffic network indicate that the CRS-ConvLSTM outperforms prevailing deep learning (DL) approaches for cases that consider critical road sections and the results validate the capability and generalizability of the model when predicting with different numbers of critical road sections." @default.
- W2884566142 created "2018-08-03" @default.
- W2884566142 creator A5002627939 @default.
- W2884566142 creator A5004717322 @default.
- W2884566142 creator A5020760956 @default.
- W2884566142 creator A5084370885 @default.
- W2884566142 creator A5086740564 @default.
- W2884566142 date "2018-07-14" @default.
- W2884566142 modified "2023-10-11" @default.
- W2884566142 title "Short-Term Traffic State Prediction Based on the Spatiotemporal Features of Critical Road Sections" @default.
- W2884566142 cites W1798398164 @default.
- W2884566142 cites W1814521481 @default.
- W2884566142 cites W1875626450 @default.
- W2884566142 cites W1967444754 @default.
- W2884566142 cites W1971757341 @default.
- W2884566142 cites W1973943669 @default.
- W2884566142 cites W1979646154 @default.
- W2884566142 cites W1980369222 @default.
- W2884566142 cites W1981239355 @default.
- W2884566142 cites W1987728022 @default.
- W2884566142 cites W1991770012 @default.
- W2884566142 cites W1997725098 @default.
- W2884566142 cites W2002841906 @default.
- W2884566142 cites W2004353783 @default.
- W2884566142 cites W2005248249 @default.
- W2884566142 cites W2005436527 @default.
- W2884566142 cites W2029050814 @default.
- W2884566142 cites W2029486861 @default.
- W2884566142 cites W2029767187 @default.
- W2884566142 cites W2031627503 @default.
- W2884566142 cites W2036785686 @default.
- W2884566142 cites W2037879427 @default.
- W2884566142 cites W2040297119 @default.
- W2884566142 cites W2049952439 @default.
- W2884566142 cites W2058336014 @default.
- W2884566142 cites W2062017159 @default.
- W2884566142 cites W2064675550 @default.
- W2884566142 cites W2069929199 @default.
- W2884566142 cites W2070193873 @default.
- W2884566142 cites W2093921901 @default.
- W2884566142 cites W2094350745 @default.
- W2884566142 cites W2115032462 @default.
- W2884566142 cites W2145039203 @default.
- W2884566142 cites W2150152686 @default.
- W2884566142 cites W2156705969 @default.
- W2884566142 cites W2165991108 @default.
- W2884566142 cites W2190353863 @default.
- W2884566142 cites W2573587735 @default.
- W2884566142 cites W2579495707 @default.
- W2884566142 cites W2613331518 @default.
- W2884566142 cites W2731150448 @default.
- W2884566142 cites W2767854248 @default.
- W2884566142 cites W2919115771 @default.
- W2884566142 doi "https://doi.org/10.3390/s18072287" @default.
- W2884566142 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6068706" @default.
- W2884566142 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30011942" @default.
- W2884566142 hasPublicationYear "2018" @default.
- W2884566142 type Work @default.
- W2884566142 sameAs 2884566142 @default.
- W2884566142 citedByCount "43" @default.
- W2884566142 countsByYear W28845661422019 @default.
- W2884566142 countsByYear W28845661422020 @default.
- W2884566142 countsByYear W28845661422021 @default.
- W2884566142 countsByYear W28845661422022 @default.
- W2884566142 countsByYear W28845661422023 @default.
- W2884566142 crossrefType "journal-article" @default.
- W2884566142 hasAuthorship W2884566142A5002627939 @default.
- W2884566142 hasAuthorship W2884566142A5004717322 @default.
- W2884566142 hasAuthorship W2884566142A5020760956 @default.
- W2884566142 hasAuthorship W2884566142A5084370885 @default.
- W2884566142 hasAuthorship W2884566142A5086740564 @default.
- W2884566142 hasBestOaLocation W28845661421 @default.
- W2884566142 hasConcept C105795698 @default.
- W2884566142 hasConcept C108583219 @default.
- W2884566142 hasConcept C119857082 @default.
- W2884566142 hasConcept C121332964 @default.
- W2884566142 hasConcept C124101348 @default.
- W2884566142 hasConcept C154945302 @default.
- W2884566142 hasConcept C166957645 @default.
- W2884566142 hasConcept C191935318 @default.
- W2884566142 hasConcept C205649164 @default.
- W2884566142 hasConcept C27158222 @default.
- W2884566142 hasConcept C2778304055 @default.
- W2884566142 hasConcept C2780186347 @default.
- W2884566142 hasConcept C31258907 @default.
- W2884566142 hasConcept C33923547 @default.
- W2884566142 hasConcept C41008148 @default.
- W2884566142 hasConcept C50644808 @default.
- W2884566142 hasConcept C61797465 @default.
- W2884566142 hasConcept C62520636 @default.
- W2884566142 hasConcept C81363708 @default.
- W2884566142 hasConceptScore W2884566142C105795698 @default.
- W2884566142 hasConceptScore W2884566142C108583219 @default.
- W2884566142 hasConceptScore W2884566142C119857082 @default.
- W2884566142 hasConceptScore W2884566142C121332964 @default.
- W2884566142 hasConceptScore W2884566142C124101348 @default.
- W2884566142 hasConceptScore W2884566142C154945302 @default.
- W2884566142 hasConceptScore W2884566142C166957645 @default.