Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884643232> ?p ?o ?g. }
- W2884643232 endingPage "345" @default.
- W2884643232 startingPage "333" @default.
- W2884643232 abstract "Deep neural networks have become a veritable alternative to classic speaker recognition and clustering methods in recent years. However, while the speech signal clearly is a time series, and despite the body of literature on the benefits of prosodic (suprasegmental) features, identifying voices has usually not been approached with sequence learning methods. Only recently has a recurrent neural network (RNN) been successfully applied to this task, while the use of convolutional neural networks (CNNs) (that are not able to capture arbitrary time dependencies, unlike RNNs) still prevails. In this paper, we show the effectiveness of RNNs for speaker recognition by improving state of the art speaker clustering performance and robustness on the classic TIMIT benchmark. We provide arguments why RNNs are superior by experimentally showing a “sweet spot” of the segment length for successfully capturing prosodic information that has been theoretically predicted in previous work." @default.
- W2884643232 created "2018-08-03" @default.
- W2884643232 creator A5017086631 @default.
- W2884643232 creator A5021570324 @default.
- W2884643232 creator A5078032390 @default.
- W2884643232 creator A5081407618 @default.
- W2884643232 date "2018-01-01" @default.
- W2884643232 modified "2023-09-30" @default.
- W2884643232 title "Capturing Suprasegmental Features of a Voice with RNNs for Improved Speaker Clustering" @default.
- W2884643232 cites W102958777 @default.
- W2884643232 cites W1606894530 @default.
- W2884643232 cites W1999082330 @default.
- W2884643232 cites W2010114458 @default.
- W2884643232 cites W2029687556 @default.
- W2884643232 cites W2041823554 @default.
- W2884643232 cites W2046056978 @default.
- W2884643232 cites W2069883713 @default.
- W2884643232 cites W2076063813 @default.
- W2884643232 cites W2108636611 @default.
- W2884643232 cites W2109761419 @default.
- W2884643232 cites W2123768812 @default.
- W2884643232 cites W2127141656 @default.
- W2884643232 cites W2141807666 @default.
- W2884643232 cites W2143612262 @default.
- W2884643232 cites W2194775991 @default.
- W2884643232 cites W2514325906 @default.
- W2884643232 cites W2638067502 @default.
- W2884643232 cites W2726515241 @default.
- W2884643232 cites W2772376594 @default.
- W2884643232 cites W2919115771 @default.
- W2884643232 cites W2963470929 @default.
- W2884643232 cites W3099206234 @default.
- W2884643232 cites W397522103 @default.
- W2884643232 cites W4245862033 @default.
- W2884643232 cites W4248480789 @default.
- W2884643232 cites W2743167696 @default.
- W2884643232 doi "https://doi.org/10.1007/978-3-319-99978-4_26" @default.
- W2884643232 hasPublicationYear "2018" @default.
- W2884643232 type Work @default.
- W2884643232 sameAs 2884643232 @default.
- W2884643232 citedByCount "5" @default.
- W2884643232 countsByYear W28846432322018 @default.
- W2884643232 countsByYear W28846432322019 @default.
- W2884643232 countsByYear W28846432322022 @default.
- W2884643232 crossrefType "book-chapter" @default.
- W2884643232 hasAuthorship W2884643232A5017086631 @default.
- W2884643232 hasAuthorship W2884643232A5021570324 @default.
- W2884643232 hasAuthorship W2884643232A5078032390 @default.
- W2884643232 hasAuthorship W2884643232A5081407618 @default.
- W2884643232 hasBestOaLocation W28846432322 @default.
- W2884643232 hasConcept C104317684 @default.
- W2884643232 hasConcept C13280743 @default.
- W2884643232 hasConcept C147168706 @default.
- W2884643232 hasConcept C153180895 @default.
- W2884643232 hasConcept C154945302 @default.
- W2884643232 hasConcept C185592680 @default.
- W2884643232 hasConcept C185798385 @default.
- W2884643232 hasConcept C205649164 @default.
- W2884643232 hasConcept C23224414 @default.
- W2884643232 hasConcept C2778724510 @default.
- W2884643232 hasConcept C28490314 @default.
- W2884643232 hasConcept C41008148 @default.
- W2884643232 hasConcept C50644808 @default.
- W2884643232 hasConcept C55493867 @default.
- W2884643232 hasConcept C63479239 @default.
- W2884643232 hasConcept C73555534 @default.
- W2884643232 hasConcept C81363708 @default.
- W2884643232 hasConceptScore W2884643232C104317684 @default.
- W2884643232 hasConceptScore W2884643232C13280743 @default.
- W2884643232 hasConceptScore W2884643232C147168706 @default.
- W2884643232 hasConceptScore W2884643232C153180895 @default.
- W2884643232 hasConceptScore W2884643232C154945302 @default.
- W2884643232 hasConceptScore W2884643232C185592680 @default.
- W2884643232 hasConceptScore W2884643232C185798385 @default.
- W2884643232 hasConceptScore W2884643232C205649164 @default.
- W2884643232 hasConceptScore W2884643232C23224414 @default.
- W2884643232 hasConceptScore W2884643232C2778724510 @default.
- W2884643232 hasConceptScore W2884643232C28490314 @default.
- W2884643232 hasConceptScore W2884643232C41008148 @default.
- W2884643232 hasConceptScore W2884643232C50644808 @default.
- W2884643232 hasConceptScore W2884643232C55493867 @default.
- W2884643232 hasConceptScore W2884643232C63479239 @default.
- W2884643232 hasConceptScore W2884643232C73555534 @default.
- W2884643232 hasConceptScore W2884643232C81363708 @default.
- W2884643232 hasLocation W28846432321 @default.
- W2884643232 hasLocation W28846432322 @default.
- W2884643232 hasOpenAccess W2884643232 @default.
- W2884643232 hasPrimaryLocation W28846432321 @default.
- W2884643232 hasRelatedWork W1566256432 @default.
- W2884643232 hasRelatedWork W1586532344 @default.
- W2884643232 hasRelatedWork W181681150 @default.
- W2884643232 hasRelatedWork W2005708641 @default.
- W2884643232 hasRelatedWork W2008638795 @default.
- W2884643232 hasRelatedWork W2050397613 @default.
- W2884643232 hasRelatedWork W2107668183 @default.
- W2884643232 hasRelatedWork W2152150474 @default.
- W2884643232 hasRelatedWork W3175483649 @default.
- W2884643232 hasRelatedWork W4221130810 @default.