Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884656323> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2884656323 abstract "Incremental Learning is well known machine learning approach wherein the weights of the learned model are dynamically and gradually updated to generalize on new unseen data without forgetting the existing knowledge. Incremental learning proves to be time as well as resource-efficient solution for deployment of deep learning algorithms in real world as the model can automatically and dynamically adapt to new data as and when annotated data becomes available. The development and deployment of Computer Aided Diagnosis (CAD) tools in medical domain is another scenario, where incremental learning becomes very crucial as collection and annotation of a comprehensive dataset spanning over multiple pathologies and imaging machines might take years. However, not much has so far been explored in this direction. In the current work, we propose a robust and efficient method for incremental learning in medical imaging domain. Our approach makes use of Hard Example Mining technique (which is commonly used as a solution to heavy class imbalance) to automatically select a subset of dataset to fine-tune the existing network weights such that it adapts to new data while retaining existing knowledge. We develop our approach for incremental learning of our already under test model for detecting dental caries. Further, we apply our approach to one publicly available dataset and demonstrate that our approach reaches the accuracy of training on entire dataset at once, while availing the benefits of incremental learning scenario." @default.
- W2884656323 created "2018-08-03" @default.
- W2884656323 creator A5048700067 @default.
- W2884656323 creator A5053595276 @default.
- W2884656323 date "2018-07-24" @default.
- W2884656323 modified "2023-09-25" @default.
- W2884656323 title "Example Mining for Incremental Learning in Medical Imaging" @default.
- W2884656323 cites W1596717185 @default.
- W2884656323 cites W1901129140 @default.
- W2884656323 cites W2115733720 @default.
- W2884656323 cites W2134270519 @default.
- W2884656323 cites W2159386181 @default.
- W2884656323 cites W2341497066 @default.
- W2884656323 cites W2770482671 @default.
- W2884656323 cites W2789051838 @default.
- W2884656323 cites W2796581872 @default.
- W2884656323 cites W3021931813 @default.
- W2884656323 hasPublicationYear "2018" @default.
- W2884656323 type Work @default.
- W2884656323 sameAs 2884656323 @default.
- W2884656323 citedByCount "0" @default.
- W2884656323 crossrefType "posted-content" @default.
- W2884656323 hasAuthorship W2884656323A5048700067 @default.
- W2884656323 hasAuthorship W2884656323A5053595276 @default.
- W2884656323 hasConcept C105339364 @default.
- W2884656323 hasConcept C108583219 @default.
- W2884656323 hasConcept C111919701 @default.
- W2884656323 hasConcept C119857082 @default.
- W2884656323 hasConcept C124101348 @default.
- W2884656323 hasConcept C134306372 @default.
- W2884656323 hasConcept C138885662 @default.
- W2884656323 hasConcept C154945302 @default.
- W2884656323 hasConcept C206345919 @default.
- W2884656323 hasConcept C207685749 @default.
- W2884656323 hasConcept C2780735816 @default.
- W2884656323 hasConcept C31258907 @default.
- W2884656323 hasConcept C33923547 @default.
- W2884656323 hasConcept C36503486 @default.
- W2884656323 hasConcept C41008148 @default.
- W2884656323 hasConcept C41895202 @default.
- W2884656323 hasConcept C7149132 @default.
- W2884656323 hasConcept C77967617 @default.
- W2884656323 hasConceptScore W2884656323C105339364 @default.
- W2884656323 hasConceptScore W2884656323C108583219 @default.
- W2884656323 hasConceptScore W2884656323C111919701 @default.
- W2884656323 hasConceptScore W2884656323C119857082 @default.
- W2884656323 hasConceptScore W2884656323C124101348 @default.
- W2884656323 hasConceptScore W2884656323C134306372 @default.
- W2884656323 hasConceptScore W2884656323C138885662 @default.
- W2884656323 hasConceptScore W2884656323C154945302 @default.
- W2884656323 hasConceptScore W2884656323C206345919 @default.
- W2884656323 hasConceptScore W2884656323C207685749 @default.
- W2884656323 hasConceptScore W2884656323C2780735816 @default.
- W2884656323 hasConceptScore W2884656323C31258907 @default.
- W2884656323 hasConceptScore W2884656323C33923547 @default.
- W2884656323 hasConceptScore W2884656323C36503486 @default.
- W2884656323 hasConceptScore W2884656323C41008148 @default.
- W2884656323 hasConceptScore W2884656323C41895202 @default.
- W2884656323 hasConceptScore W2884656323C7149132 @default.
- W2884656323 hasConceptScore W2884656323C77967617 @default.
- W2884656323 hasLocation W28846563231 @default.
- W2884656323 hasOpenAccess W2884656323 @default.
- W2884656323 hasPrimaryLocation W28846563231 @default.
- W2884656323 hasRelatedWork W2073683004 @default.
- W2884656323 hasRelatedWork W2107213321 @default.
- W2884656323 hasRelatedWork W2195855237 @default.
- W2884656323 hasRelatedWork W2773553693 @default.
- W2884656323 hasRelatedWork W2782796106 @default.
- W2884656323 hasRelatedWork W2800858259 @default.
- W2884656323 hasRelatedWork W2807445254 @default.
- W2884656323 hasRelatedWork W2901013424 @default.
- W2884656323 hasRelatedWork W2949303193 @default.
- W2884656323 hasRelatedWork W2963306291 @default.
- W2884656323 hasRelatedWork W2963556008 @default.
- W2884656323 hasRelatedWork W2993840636 @default.
- W2884656323 hasRelatedWork W3034451759 @default.
- W2884656323 hasRelatedWork W3034911677 @default.
- W2884656323 hasRelatedWork W3111153007 @default.
- W2884656323 hasRelatedWork W3153198236 @default.
- W2884656323 hasRelatedWork W3155287722 @default.
- W2884656323 hasRelatedWork W3163939464 @default.
- W2884656323 hasRelatedWork W3198636227 @default.
- W2884656323 hasRelatedWork W2929271699 @default.
- W2884656323 isParatext "false" @default.
- W2884656323 isRetracted "false" @default.
- W2884656323 magId "2884656323" @default.
- W2884656323 workType "article" @default.