Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884707624> ?p ?o ?g. }
- W2884707624 endingPage "e0200962" @default.
- W2884707624 startingPage "e0200962" @default.
- W2884707624 abstract "Multiplex quantitative polymerase chain reaction (qPCR) has found an increasing range of applications. The construction of a reliable and dynamic mathematical model for multiplex qPCR that analyzes the effects of interactions between variables is therefore especially important. This work aimed to analyze the effects of interactions between variables through response surface method (RSM) for uni- and multiplex qPCR, and further optimize the parameters by constructing two mathematical models via RSM and back-propagation neural network-genetic algorithm (BPNN-GA) respectively. The statistical analysis showed that Mg2+ was the most important factor for both uni- and multiplex qPCR. Dynamic models of uni- and multiplex qPCR could be constructed using both RSM and BPNN-GA methods. But RSM was better than BPNN-GA on prediction performance in terms of the mean absolute error (MAE), the mean square error (MSE) and the Coefficient of Determination (R2). Ultimately, optimal parameters of uni- and multiplex qPCR were determined by RSM." @default.
- W2884707624 created "2018-08-03" @default.
- W2884707624 creator A5001369896 @default.
- W2884707624 creator A5010481244 @default.
- W2884707624 creator A5027280914 @default.
- W2884707624 creator A5034253292 @default.
- W2884707624 creator A5063800558 @default.
- W2884707624 creator A5069704727 @default.
- W2884707624 creator A5083729859 @default.
- W2884707624 date "2018-07-25" @default.
- W2884707624 modified "2023-09-25" @default.
- W2884707624 title "Optimization of multiplex quantitative polymerase chain reaction based on response surface methodology and an artificial neural network-genetic algorithm approach" @default.
- W2884707624 cites W1602413553 @default.
- W2884707624 cites W165036232 @default.
- W2884707624 cites W1965566852 @default.
- W2884707624 cites W1965667065 @default.
- W2884707624 cites W1971930446 @default.
- W2884707624 cites W1981203145 @default.
- W2884707624 cites W1988020207 @default.
- W2884707624 cites W1994739064 @default.
- W2884707624 cites W1999901250 @default.
- W2884707624 cites W2014954149 @default.
- W2884707624 cites W2020138272 @default.
- W2884707624 cites W2023065506 @default.
- W2884707624 cites W2031439628 @default.
- W2884707624 cites W2052532932 @default.
- W2884707624 cites W2069797500 @default.
- W2884707624 cites W2088376206 @default.
- W2884707624 cites W2096298665 @default.
- W2884707624 cites W2105433010 @default.
- W2884707624 cites W2111251104 @default.
- W2884707624 cites W2137089963 @default.
- W2884707624 cites W2149158577 @default.
- W2884707624 cites W2151637704 @default.
- W2884707624 cites W2166025401 @default.
- W2884707624 cites W2168420558 @default.
- W2884707624 cites W2195461274 @default.
- W2884707624 cites W2196967784 @default.
- W2884707624 cites W2253249118 @default.
- W2884707624 cites W2340317687 @default.
- W2884707624 cites W2344231118 @default.
- W2884707624 cites W2410805225 @default.
- W2884707624 cites W2418181265 @default.
- W2884707624 cites W2517946761 @default.
- W2884707624 cites W2528871663 @default.
- W2884707624 cites W2537879781 @default.
- W2884707624 cites W2551092483 @default.
- W2884707624 cites W2601097189 @default.
- W2884707624 cites W284264172 @default.
- W2884707624 cites W4234856234 @default.
- W2884707624 doi "https://doi.org/10.1371/journal.pone.0200962" @default.
- W2884707624 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6059488" @default.
- W2884707624 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30044832" @default.
- W2884707624 hasPublicationYear "2018" @default.
- W2884707624 type Work @default.
- W2884707624 sameAs 2884707624 @default.
- W2884707624 citedByCount "8" @default.
- W2884707624 countsByYear W28847076242019 @default.
- W2884707624 countsByYear W28847076242020 @default.
- W2884707624 countsByYear W28847076242021 @default.
- W2884707624 countsByYear W28847076242022 @default.
- W2884707624 crossrefType "journal-article" @default.
- W2884707624 hasAuthorship W2884707624A5001369896 @default.
- W2884707624 hasAuthorship W2884707624A5010481244 @default.
- W2884707624 hasAuthorship W2884707624A5027280914 @default.
- W2884707624 hasAuthorship W2884707624A5034253292 @default.
- W2884707624 hasAuthorship W2884707624A5063800558 @default.
- W2884707624 hasAuthorship W2884707624A5069704727 @default.
- W2884707624 hasAuthorship W2884707624A5083729859 @default.
- W2884707624 hasBestOaLocation W28847076241 @default.
- W2884707624 hasConcept C104317684 @default.
- W2884707624 hasConcept C105795698 @default.
- W2884707624 hasConcept C11413529 @default.
- W2884707624 hasConcept C119857082 @default.
- W2884707624 hasConcept C139945424 @default.
- W2884707624 hasConcept C150077022 @default.
- W2884707624 hasConcept C154945302 @default.
- W2884707624 hasConcept C186060115 @default.
- W2884707624 hasConcept C2780092901 @default.
- W2884707624 hasConcept C2781188995 @default.
- W2884707624 hasConcept C33923547 @default.
- W2884707624 hasConcept C41008148 @default.
- W2884707624 hasConcept C49105822 @default.
- W2884707624 hasConcept C50644808 @default.
- W2884707624 hasConcept C54355233 @default.
- W2884707624 hasConcept C60644358 @default.
- W2884707624 hasConcept C86803240 @default.
- W2884707624 hasConcept C8880873 @default.
- W2884707624 hasConcept C90583042 @default.
- W2884707624 hasConceptScore W2884707624C104317684 @default.
- W2884707624 hasConceptScore W2884707624C105795698 @default.
- W2884707624 hasConceptScore W2884707624C11413529 @default.
- W2884707624 hasConceptScore W2884707624C119857082 @default.
- W2884707624 hasConceptScore W2884707624C139945424 @default.
- W2884707624 hasConceptScore W2884707624C150077022 @default.
- W2884707624 hasConceptScore W2884707624C154945302 @default.
- W2884707624 hasConceptScore W2884707624C186060115 @default.
- W2884707624 hasConceptScore W2884707624C2780092901 @default.