Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884748395> ?p ?o ?g. }
- W2884748395 endingPage "1576" @default.
- W2884748395 startingPage "1576" @default.
- W2884748395 abstract "Many studies have established that urban greenness is associated with better health outcomes. Yet most studies assess urban greenness with overhead-view measures, such as park area or tree count, which often differs from the amount of greenness perceived by a person at eye-level on the ground. Furthermore, those studies are often criticized for the limitation of residential self-selection bias. In this study, urban greenness was extracted and assessed from profile view of streetscape images by Google Street View (GSV), in conjunction with deep learning techniques. We also explored a unique research opportunity arising in a citywide residential reallocation scheme of Hong Kong to reduce residential self-selection bias. Two multilevel regression analyses were conducted to examine the relationships between urban greenness and (1) the odds of walking for 24,773 public housing residents in Hong Kong, (2) total walking time of 1994 residents, while controlling for potential confounders. The results suggested that eye-level greenness was significantly related to higher odds of walking and longer walking time in both 400 m and 800 m buffers. Distance to the closest Mass Transit Rail (MTR) station was also associated with higher odds of walking. Number of shops was related to higher odds of walking in the 800 m buffer, but not in 400 m. Eye-level greenness, assessed by GSV images and deep learning techniques, can effectively estimate residents’ daily exposure to urban greenness, which is in turn associated with their walking behavior. Our findings apply to the entire public housing residents in Hong Kong, because of the large sample size." @default.
- W2884748395 created "2018-08-03" @default.
- W2884748395 creator A5043711460 @default.
- W2884748395 date "2018-07-25" @default.
- W2884748395 modified "2023-10-17" @default.
- W2884748395 title "The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness" @default.
- W2884748395 cites W1958782862 @default.
- W2884748395 cites W1964853204 @default.
- W2884748395 cites W1965577911 @default.
- W2884748395 cites W1966267313 @default.
- W2884748395 cites W1967652349 @default.
- W2884748395 cites W1974353382 @default.
- W2884748395 cites W1975793762 @default.
- W2884748395 cites W1984042903 @default.
- W2884748395 cites W1986351906 @default.
- W2884748395 cites W1990553815 @default.
- W2884748395 cites W1993204132 @default.
- W2884748395 cites W1998003247 @default.
- W2884748395 cites W2005544339 @default.
- W2884748395 cites W2006767569 @default.
- W2884748395 cites W2007157531 @default.
- W2884748395 cites W2009870422 @default.
- W2884748395 cites W2018781231 @default.
- W2884748395 cites W202456592 @default.
- W2884748395 cites W2027502995 @default.
- W2884748395 cites W2027808287 @default.
- W2884748395 cites W2029639376 @default.
- W2884748395 cites W2031144416 @default.
- W2884748395 cites W2045135809 @default.
- W2884748395 cites W2055589130 @default.
- W2884748395 cites W2055613674 @default.
- W2884748395 cites W2059205334 @default.
- W2884748395 cites W2059320591 @default.
- W2884748395 cites W2061208740 @default.
- W2884748395 cites W2064870548 @default.
- W2884748395 cites W2073534662 @default.
- W2884748395 cites W2075184179 @default.
- W2884748395 cites W2088564813 @default.
- W2884748395 cites W2096173318 @default.
- W2884748395 cites W2096528587 @default.
- W2884748395 cites W2106130024 @default.
- W2884748395 cites W2108250337 @default.
- W2884748395 cites W2108780933 @default.
- W2884748395 cites W2109189649 @default.
- W2884748395 cites W2111255034 @default.
- W2884748395 cites W2114401243 @default.
- W2884748395 cites W2119616510 @default.
- W2884748395 cites W2120278419 @default.
- W2884748395 cites W2122806520 @default.
- W2884748395 cites W2123430619 @default.
- W2884748395 cites W2135871121 @default.
- W2884748395 cites W2139195914 @default.
- W2884748395 cites W2142544231 @default.
- W2884748395 cites W2142842186 @default.
- W2884748395 cites W2143071615 @default.
- W2884748395 cites W2144512297 @default.
- W2884748395 cites W2145019908 @default.
- W2884748395 cites W2147726063 @default.
- W2884748395 cites W2152764641 @default.
- W2884748395 cites W2155329925 @default.
- W2884748395 cites W2161490014 @default.
- W2884748395 cites W2162890047 @default.
- W2884748395 cites W2163985362 @default.
- W2884748395 cites W2168113371 @default.
- W2884748395 cites W2198104046 @default.
- W2884748395 cites W2288772691 @default.
- W2884748395 cites W2302504590 @default.
- W2884748395 cites W2340897893 @default.
- W2884748395 cites W2438072089 @default.
- W2884748395 cites W2499937126 @default.
- W2884748395 cites W2515590944 @default.
- W2884748395 cites W2567309042 @default.
- W2884748395 cites W2585133390 @default.
- W2884748395 cites W2587510093 @default.
- W2884748395 cites W2610605913 @default.
- W2884748395 cites W2617647211 @default.
- W2884748395 cites W2620353044 @default.
- W2884748395 cites W2678563835 @default.
- W2884748395 cites W2727275208 @default.
- W2884748395 cites W2736337626 @default.
- W2884748395 cites W2799471775 @default.
- W2884748395 cites W2894961559 @default.
- W2884748395 cites W631895740 @default.
- W2884748395 doi "https://doi.org/10.3390/ijerph15081576" @default.
- W2884748395 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6121356" @default.
- W2884748395 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30044417" @default.
- W2884748395 hasPublicationYear "2018" @default.
- W2884748395 type Work @default.
- W2884748395 sameAs 2884748395 @default.
- W2884748395 citedByCount "54" @default.
- W2884748395 countsByYear W28847483952018 @default.
- W2884748395 countsByYear W28847483952019 @default.
- W2884748395 countsByYear W28847483952020 @default.
- W2884748395 countsByYear W28847483952021 @default.
- W2884748395 countsByYear W28847483952022 @default.
- W2884748395 countsByYear W28847483952023 @default.
- W2884748395 crossrefType "journal-article" @default.
- W2884748395 hasAuthorship W2884748395A5043711460 @default.