Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884817966> ?p ?o ?g. }
- W2884817966 endingPage "4501" @default.
- W2884817966 startingPage "4495" @default.
- W2884817966 abstract "Partial atomic charge assignment is of immense practical value to force field parametrization, molecular docking, and cheminformatics. Machine learning has emerged as a powerful tool for modeling chemistry at unprecedented computational speeds given accurate reference data. However, certain tasks, such as charge assignment, do not have a unique solution. Herein, we use a machine learning algorithm to discover a new charge assignment model by learning to replicate molecular dipole moments across a large, diverse set of nonequilibrium conformations of molecules containing C, H, N, and O atoms. The new model, called Affordable Charge Assignment (ACA), is computationally inexpensive and predicts dipoles of out-of-sample molecules accurately. Furthermore, dipole-inferred ACA charges are transferable to dipole and even quadrupole moments of much larger molecules than those used for training. We apply ACA to dynamical trajectories of biomolecules and produce their infrared spectra. Additionally, we find that ACA assigns similar charges to Charge Model 5 but with greatly reduced computational cost." @default.
- W2884817966 created "2018-08-03" @default.
- W2884817966 creator A5003874504 @default.
- W2884817966 creator A5004656368 @default.
- W2884817966 creator A5011932992 @default.
- W2884817966 creator A5021344986 @default.
- W2884817966 creator A5048973716 @default.
- W2884817966 creator A5056150849 @default.
- W2884817966 creator A5078126229 @default.
- W2884817966 creator A5081624801 @default.
- W2884817966 creator A5084142327 @default.
- W2884817966 date "2018-07-24" @default.
- W2884817966 modified "2023-10-17" @default.
- W2884817966 title "Discovering a Transferable Charge Assignment Model Using Machine Learning" @default.
- W2884817966 cites W1513260206 @default.
- W2884817966 cites W1531674615 @default.
- W2884817966 cites W1843396089 @default.
- W2884817966 cites W1971209681 @default.
- W2884817966 cites W1991238353 @default.
- W2884817966 cites W1993383767 @default.
- W2884817966 cites W1997772366 @default.
- W2884817966 cites W1998260904 @default.
- W2884817966 cites W2012121165 @default.
- W2884817966 cites W2018745374 @default.
- W2884817966 cites W2025444507 @default.
- W2884817966 cites W2037788435 @default.
- W2884817966 cites W2053117030 @default.
- W2884817966 cites W2055526416 @default.
- W2884817966 cites W2057858097 @default.
- W2884817966 cites W2071955309 @default.
- W2884817966 cites W2102537419 @default.
- W2884817966 cites W2104489082 @default.
- W2884817966 cites W2105616783 @default.
- W2884817966 cites W2107029002 @default.
- W2884817966 cites W2115462899 @default.
- W2884817966 cites W2133959849 @default.
- W2884817966 cites W2134164499 @default.
- W2884817966 cites W2183132306 @default.
- W2884817966 cites W2323403662 @default.
- W2884817966 cites W2324930475 @default.
- W2884817966 cites W2541404351 @default.
- W2884817966 cites W2543252439 @default.
- W2884817966 cites W2563751252 @default.
- W2884817966 cites W2585152223 @default.
- W2884817966 cites W2620906374 @default.
- W2884817966 cites W2737127163 @default.
- W2884817966 cites W2749006386 @default.
- W2884817966 cites W2749580687 @default.
- W2884817966 cites W2756682189 @default.
- W2884817966 cites W2757878424 @default.
- W2884817966 cites W2768213699 @default.
- W2884817966 cites W2778051509 @default.
- W2884817966 cites W2785813126 @default.
- W2884817966 cites W2786308452 @default.
- W2884817966 cites W2788873578 @default.
- W2884817966 cites W2790960441 @default.
- W2884817966 cites W2800168263 @default.
- W2884817966 cites W2885841934 @default.
- W2884817966 cites W2964268718 @default.
- W2884817966 cites W2978694339 @default.
- W2884817966 cites W3099813870 @default.
- W2884817966 cites W3099937095 @default.
- W2884817966 cites W3099950071 @default.
- W2884817966 cites W3101005742 @default.
- W2884817966 cites W3101643101 @default.
- W2884817966 cites W3102449990 @default.
- W2884817966 cites W3105137560 @default.
- W2884817966 doi "https://doi.org/10.1021/acs.jpclett.8b01939" @default.
- W2884817966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30039707" @default.
- W2884817966 hasPublicationYear "2018" @default.
- W2884817966 type Work @default.
- W2884817966 sameAs 2884817966 @default.
- W2884817966 citedByCount "99" @default.
- W2884817966 countsByYear W28848179662018 @default.
- W2884817966 countsByYear W28848179662019 @default.
- W2884817966 countsByYear W28848179662020 @default.
- W2884817966 countsByYear W28848179662021 @default.
- W2884817966 countsByYear W28848179662022 @default.
- W2884817966 countsByYear W28848179662023 @default.
- W2884817966 crossrefType "journal-article" @default.
- W2884817966 hasAuthorship W2884817966A5003874504 @default.
- W2884817966 hasAuthorship W2884817966A5004656368 @default.
- W2884817966 hasAuthorship W2884817966A5011932992 @default.
- W2884817966 hasAuthorship W2884817966A5021344986 @default.
- W2884817966 hasAuthorship W2884817966A5048973716 @default.
- W2884817966 hasAuthorship W2884817966A5056150849 @default.
- W2884817966 hasAuthorship W2884817966A5078126229 @default.
- W2884817966 hasAuthorship W2884817966A5081624801 @default.
- W2884817966 hasAuthorship W2884817966A5084142327 @default.
- W2884817966 hasBestOaLocation W28848179663 @default.
- W2884817966 hasConcept C11413529 @default.
- W2884817966 hasConcept C119857082 @default.
- W2884817966 hasConcept C121332964 @default.
- W2884817966 hasConcept C121864883 @default.
- W2884817966 hasConcept C12892243 @default.
- W2884817966 hasConcept C147597530 @default.
- W2884817966 hasConcept C154945302 @default.
- W2884817966 hasConcept C159467904 @default.