Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884821113> ?p ?o ?g. }
- W2884821113 endingPage "1119" @default.
- W2884821113 startingPage "1119" @default.
- W2884821113 abstract "Despite recent advances of deep Convolutional Neural Networks (CNNs) in various computer vision tasks, their potential for classification of multispectral remote sensing images has not been thoroughly explored. In particular, the applications of deep CNNs using optical remote sensing data have focused on the classification of very high-resolution aerial and satellite data, owing to the similarity of these data to the large datasets in computer vision. Accordingly, this study presents a detailed investigation of state-of-the-art deep learning tools for classification of complex wetland classes using multispectral RapidEye optical imagery. Specifically, we examine the capacity of seven well-known deep convnets, namely DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50, and InceptionResNetV2, for wetland mapping in Canada. In addition, the classification results obtained from deep CNNs are compared with those based on conventional machine learning tools, including Random Forest and Support Vector Machine, to further evaluate the efficiency of the former to classify wetlands. The results illustrate that the full-training of convnets using five spectral bands outperforms the other strategies for all convnets. InceptionResNetV2, ResNet50, and Xception are distinguished as the top three convnets, providing state-of-the-art classification accuracies of 96.17%, 94.81%, and 93.57%, respectively. The classification accuracies obtained using Support Vector Machine (SVM) and Random Forest (RF) are 74.89% and 76.08%, respectively, considerably inferior relative to CNNs. Importantly, InceptionResNetV2 is consistently found to be superior compared to all other convnets, suggesting the integration of Inception and ResNet modules is an efficient architecture for classifying complex remote sensing scenes such as wetlands." @default.
- W2884821113 created "2018-08-03" @default.
- W2884821113 creator A5003315831 @default.
- W2884821113 creator A5038657698 @default.
- W2884821113 creator A5063944760 @default.
- W2884821113 creator A5081965789 @default.
- W2884821113 creator A5082835516 @default.
- W2884821113 date "2018-07-14" @default.
- W2884821113 modified "2023-10-16" @default.
- W2884821113 title "Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery" @default.
- W2884821113 cites W1971637299 @default.
- W2884821113 cites W1984792953 @default.
- W2884821113 cites W1996828724 @default.
- W2884821113 cites W2029316659 @default.
- W2884821113 cites W2035549557 @default.
- W2884821113 cites W2066916495 @default.
- W2884821113 cites W2098676252 @default.
- W2884821113 cites W2100495367 @default.
- W2884821113 cites W2107966405 @default.
- W2884821113 cites W2112796928 @default.
- W2884821113 cites W2136922672 @default.
- W2884821113 cites W2164330327 @default.
- W2884821113 cites W2166229804 @default.
- W2884821113 cites W2253590344 @default.
- W2884821113 cites W2267317359 @default.
- W2884821113 cites W2412588858 @default.
- W2884821113 cites W2578577414 @default.
- W2884821113 cites W2653148934 @default.
- W2884821113 cites W2740144340 @default.
- W2884821113 cites W2763337526 @default.
- W2884821113 cites W2763835132 @default.
- W2884821113 cites W2770429219 @default.
- W2884821113 cites W2778539913 @default.
- W2884821113 cites W2782438771 @default.
- W2884821113 cites W2806676663 @default.
- W2884821113 cites W2811244448 @default.
- W2884821113 cites W2883315788 @default.
- W2884821113 cites W2919115771 @default.
- W2884821113 cites W2963659230 @default.
- W2884821113 cites W3104341624 @default.
- W2884821113 doi "https://doi.org/10.3390/rs10071119" @default.
- W2884821113 hasPublicationYear "2018" @default.
- W2884821113 type Work @default.
- W2884821113 sameAs 2884821113 @default.
- W2884821113 citedByCount "289" @default.
- W2884821113 countsByYear W28848211132018 @default.
- W2884821113 countsByYear W28848211132019 @default.
- W2884821113 countsByYear W28848211132020 @default.
- W2884821113 countsByYear W28848211132021 @default.
- W2884821113 countsByYear W28848211132022 @default.
- W2884821113 countsByYear W28848211132023 @default.
- W2884821113 crossrefType "journal-article" @default.
- W2884821113 hasAuthorship W2884821113A5003315831 @default.
- W2884821113 hasAuthorship W2884821113A5038657698 @default.
- W2884821113 hasAuthorship W2884821113A5063944760 @default.
- W2884821113 hasAuthorship W2884821113A5081965789 @default.
- W2884821113 hasAuthorship W2884821113A5082835516 @default.
- W2884821113 hasBestOaLocation W28848211131 @default.
- W2884821113 hasConcept C108583219 @default.
- W2884821113 hasConcept C115961682 @default.
- W2884821113 hasConcept C12267149 @default.
- W2884821113 hasConcept C127313418 @default.
- W2884821113 hasConcept C127413603 @default.
- W2884821113 hasConcept C147176958 @default.
- W2884821113 hasConcept C153180895 @default.
- W2884821113 hasConcept C154945302 @default.
- W2884821113 hasConcept C169258074 @default.
- W2884821113 hasConcept C173163844 @default.
- W2884821113 hasConcept C2778102629 @default.
- W2884821113 hasConcept C2780648208 @default.
- W2884821113 hasConcept C41008148 @default.
- W2884821113 hasConcept C4792198 @default.
- W2884821113 hasConcept C62649853 @default.
- W2884821113 hasConcept C75294576 @default.
- W2884821113 hasConcept C81363708 @default.
- W2884821113 hasConceptScore W2884821113C108583219 @default.
- W2884821113 hasConceptScore W2884821113C115961682 @default.
- W2884821113 hasConceptScore W2884821113C12267149 @default.
- W2884821113 hasConceptScore W2884821113C127313418 @default.
- W2884821113 hasConceptScore W2884821113C127413603 @default.
- W2884821113 hasConceptScore W2884821113C147176958 @default.
- W2884821113 hasConceptScore W2884821113C153180895 @default.
- W2884821113 hasConceptScore W2884821113C154945302 @default.
- W2884821113 hasConceptScore W2884821113C169258074 @default.
- W2884821113 hasConceptScore W2884821113C173163844 @default.
- W2884821113 hasConceptScore W2884821113C2778102629 @default.
- W2884821113 hasConceptScore W2884821113C2780648208 @default.
- W2884821113 hasConceptScore W2884821113C41008148 @default.
- W2884821113 hasConceptScore W2884821113C4792198 @default.
- W2884821113 hasConceptScore W2884821113C62649853 @default.
- W2884821113 hasConceptScore W2884821113C75294576 @default.
- W2884821113 hasConceptScore W2884821113C81363708 @default.
- W2884821113 hasFunder F4320321487 @default.
- W2884821113 hasFunder F4320322500 @default.
- W2884821113 hasIssue "7" @default.
- W2884821113 hasLocation W28848211131 @default.
- W2884821113 hasLocation W28848211132 @default.
- W2884821113 hasOpenAccess W2884821113 @default.