Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884912413> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2884912413 endingPage "4728" @default.
- W2884912413 startingPage "472" @default.
- W2884912413 abstract "Computed Tomography (CT) is a non-invasive imaging technique that reconstructs cross-sectional images of scenes from a series of projections acquired at different angles. In applications such as airport security luggage screening, the presence of dense metal clutter causes beam hardening and streaking in the resulting conventionally formed images. These artifacts can lead to object splitting and intensity shading that make subsequent labeling and identification inaccurate. Conventional approaches to metal artifact reduction (MAR) have post-processed the artifact-filled images or interpolated the metal regions of the sinogram projection data. In this work, we examine the use of deep-learning-based methods to directly correct the observed sinogram projection data prior to reconstruction using a fully convolutional network (FCN). In contrast to existing learning-based CT artifact reduction work, we work completely in the sinogram domain and train a network over the entire sinogram (versus just local image patches). Since the information in sinograms pertaining to objects is non-local, patch-based methods are not well matched to the nature of CT data. The use of an FCN provides better computational scaling than historical perceptron-based approaches. Using a poly-energetic CT simulation, we demonstrate the potential of this new approach in mitigating metal artifacts in CT." @default.
- W2884912413 created "2018-08-03" @default.
- W2884912413 creator A5042506283 @default.
- W2884912413 creator A5060038714 @default.
- W2884912413 date "2018-01-28" @default.
- W2884912413 modified "2023-10-18" @default.
- W2884912413 title "Deep Learning Based Sinogram Correction for Metal Artifact Reduction" @default.
- W2884912413 cites W1589320680 @default.
- W2884912413 cites W1677182931 @default.
- W2884912413 cites W1972664446 @default.
- W2884912413 cites W1996992165 @default.
- W2884912413 cites W2042580235 @default.
- W2884912413 cites W2079127706 @default.
- W2884912413 cites W2093120290 @default.
- W2884912413 cites W2101891472 @default.
- W2884912413 cites W2114286204 @default.
- W2884912413 cites W2117539524 @default.
- W2884912413 cites W2119408205 @default.
- W2884912413 cites W2119468597 @default.
- W2884912413 cites W2124340452 @default.
- W2884912413 cites W2154129661 @default.
- W2884912413 cites W2154280873 @default.
- W2884912413 cites W2242218935 @default.
- W2884912413 cites W2508457857 @default.
- W2884912413 cites W2512432807 @default.
- W2884912413 cites W2574952845 @default.
- W2884912413 cites W2754357950 @default.
- W2884912413 cites W2949117887 @default.
- W2884912413 cites W2963919294 @default.
- W2884912413 doi "https://doi.org/10.2352/issn.2470-1173.2018.15.coimg-472" @default.
- W2884912413 hasPublicationYear "2018" @default.
- W2884912413 type Work @default.
- W2884912413 sameAs 2884912413 @default.
- W2884912413 citedByCount "37" @default.
- W2884912413 countsByYear W28849124132019 @default.
- W2884912413 countsByYear W28849124132020 @default.
- W2884912413 countsByYear W28849124132021 @default.
- W2884912413 countsByYear W28849124132022 @default.
- W2884912413 countsByYear W28849124132023 @default.
- W2884912413 crossrefType "journal-article" @default.
- W2884912413 hasAuthorship W2884912413A5042506283 @default.
- W2884912413 hasAuthorship W2884912413A5060038714 @default.
- W2884912413 hasConcept C108583219 @default.
- W2884912413 hasConcept C11413529 @default.
- W2884912413 hasConcept C141379421 @default.
- W2884912413 hasConcept C153180895 @default.
- W2884912413 hasConcept C154945302 @default.
- W2884912413 hasConcept C2779010991 @default.
- W2884912413 hasConcept C31972630 @default.
- W2884912413 hasConcept C41008148 @default.
- W2884912413 hasConcept C57493831 @default.
- W2884912413 hasConcept C81363708 @default.
- W2884912413 hasConceptScore W2884912413C108583219 @default.
- W2884912413 hasConceptScore W2884912413C11413529 @default.
- W2884912413 hasConceptScore W2884912413C141379421 @default.
- W2884912413 hasConceptScore W2884912413C153180895 @default.
- W2884912413 hasConceptScore W2884912413C154945302 @default.
- W2884912413 hasConceptScore W2884912413C2779010991 @default.
- W2884912413 hasConceptScore W2884912413C31972630 @default.
- W2884912413 hasConceptScore W2884912413C41008148 @default.
- W2884912413 hasConceptScore W2884912413C57493831 @default.
- W2884912413 hasConceptScore W2884912413C81363708 @default.
- W2884912413 hasIssue "15" @default.
- W2884912413 hasLocation W28849124131 @default.
- W2884912413 hasOpenAccess W2884912413 @default.
- W2884912413 hasPrimaryLocation W28849124131 @default.
- W2884912413 hasRelatedWork W2731899572 @default.
- W2884912413 hasRelatedWork W2999805992 @default.
- W2884912413 hasRelatedWork W3011074480 @default.
- W2884912413 hasRelatedWork W3116150086 @default.
- W2884912413 hasRelatedWork W3133861977 @default.
- W2884912413 hasRelatedWork W3192840557 @default.
- W2884912413 hasRelatedWork W4200173597 @default.
- W2884912413 hasRelatedWork W4291897433 @default.
- W2884912413 hasRelatedWork W4312417841 @default.
- W2884912413 hasRelatedWork W4321369474 @default.
- W2884912413 hasVolume "30" @default.
- W2884912413 isParatext "false" @default.
- W2884912413 isRetracted "false" @default.
- W2884912413 magId "2884912413" @default.
- W2884912413 workType "article" @default.