Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884949378> ?p ?o ?g. }
- W2884949378 endingPage "676" @default.
- W2884949378 startingPage "665" @default.
- W2884949378 abstract "Concentrated wastewaters from agricultural industries represent a key opportunity for the upcycling of organics, nitrogen and phosphorus to higher value products such as microbial protein. Phototrophic or photosynthetic microbes very effectively capture input organics and nutrients as microbial protein. This study compares purple phototrophic bacteria (PPB) and microalgae (photosynthesis) for this purpose, treating real, high strength poultry processing wastewater in continuous photo bioreactors utilising infrared (IR) and white light (WL) respectively. Both reactors could effectively treat the wastewaters, and at similar loading rates (4 kgCOD m−3d−1). The infrared reactor (IRR) was irradiated at 18 W m−2 and the white light reactor (WLR) reactor at 1.5–2 times this. The IRR could remove up to 90% total chemical oxygen demand (TCOD), 90% total nitrogen (TN) and 45% total phosphorus (TP) at 1.0 d hydraulic retention time (HRT) and recover around 190 kg of crude protein per tonne of influent COD at 7.0 kWh per dry tonne−1 light input, with PPB dominating all samples. In comparison, the WLR removed up to 98% COD, 94% TN and 44% TP at 43–90% higher irradiance compared to the PPB reactor. Microalgae did not dominate the WLR and the community was instead a mix of microbes (algae, bacteria, zooplankton and detritus – ALBAZOD) with a production of approximately 140 kg crude protein per tonne influent COD." @default.
- W2884949378 created "2018-08-03" @default.
- W2884949378 creator A5007391875 @default.
- W2884949378 creator A5029134029 @default.
- W2884949378 creator A5033662421 @default.
- W2884949378 creator A5040091184 @default.
- W2884949378 creator A5050639712 @default.
- W2884949378 creator A5063159658 @default.
- W2884949378 date "2018-11-01" @default.
- W2884949378 modified "2023-10-15" @default.
- W2884949378 title "White and infrared light continuous photobioreactors for resource recovery from poultry processing wastewater – A comparison" @default.
- W2884949378 cites W142598672 @default.
- W2884949378 cites W1490594981 @default.
- W2884949378 cites W187596488 @default.
- W2884949378 cites W1965050192 @default.
- W2884949378 cites W1966962815 @default.
- W2884949378 cites W1970717160 @default.
- W2884949378 cites W1976824303 @default.
- W2884949378 cites W1979340758 @default.
- W2884949378 cites W1979585856 @default.
- W2884949378 cites W1979854228 @default.
- W2884949378 cites W1980750600 @default.
- W2884949378 cites W1980793734 @default.
- W2884949378 cites W1986160959 @default.
- W2884949378 cites W1991164605 @default.
- W2884949378 cites W1995330255 @default.
- W2884949378 cites W2000743242 @default.
- W2884949378 cites W2005249179 @default.
- W2884949378 cites W2006014761 @default.
- W2884949378 cites W2010978066 @default.
- W2884949378 cites W2012220207 @default.
- W2884949378 cites W2016097949 @default.
- W2884949378 cites W2016559293 @default.
- W2884949378 cites W2016956135 @default.
- W2884949378 cites W2030244969 @default.
- W2884949378 cites W2032605568 @default.
- W2884949378 cites W2034285706 @default.
- W2884949378 cites W2038999724 @default.
- W2884949378 cites W2039243075 @default.
- W2884949378 cites W2039633341 @default.
- W2884949378 cites W2042453322 @default.
- W2884949378 cites W2043003528 @default.
- W2884949378 cites W2046141744 @default.
- W2884949378 cites W2046822061 @default.
- W2884949378 cites W2048450238 @default.
- W2884949378 cites W2049621851 @default.
- W2884949378 cites W2052886689 @default.
- W2884949378 cites W2052952782 @default.
- W2884949378 cites W2056279562 @default.
- W2884949378 cites W2056356047 @default.
- W2884949378 cites W2058067200 @default.
- W2884949378 cites W2060891182 @default.
- W2884949378 cites W2064195288 @default.
- W2884949378 cites W2070453010 @default.
- W2884949378 cites W2071082342 @default.
- W2884949378 cites W2072494082 @default.
- W2884949378 cites W2072970694 @default.
- W2884949378 cites W2075740579 @default.
- W2884949378 cites W2086172955 @default.
- W2884949378 cites W2088589945 @default.
- W2884949378 cites W2092449988 @default.
- W2884949378 cites W2102570929 @default.
- W2884949378 cites W2105414963 @default.
- W2884949378 cites W2107710344 @default.
- W2884949378 cites W2108059426 @default.
- W2884949378 cites W2110182011 @default.
- W2884949378 cites W2124351063 @default.
- W2884949378 cites W2127354347 @default.
- W2884949378 cites W2129297365 @default.
- W2884949378 cites W2131271579 @default.
- W2884949378 cites W2132548846 @default.
- W2884949378 cites W2138224803 @default.
- W2884949378 cites W2139028818 @default.
- W2884949378 cites W2140763430 @default.
- W2884949378 cites W2142678895 @default.
- W2884949378 cites W2144581675 @default.
- W2884949378 cites W2145035782 @default.
- W2884949378 cites W2147403471 @default.
- W2884949378 cites W2147466650 @default.
- W2884949378 cites W2148227357 @default.
- W2884949378 cites W2148829718 @default.
- W2884949378 cites W2163539745 @default.
- W2884949378 cites W2165189049 @default.
- W2884949378 cites W2212799899 @default.
- W2884949378 cites W2267053221 @default.
- W2884949378 cites W228244306 @default.
- W2884949378 cites W2343035888 @default.
- W2884949378 cites W2346002767 @default.
- W2884949378 cites W2399575436 @default.
- W2884949378 cites W2745082083 @default.
- W2884949378 cites W2756024474 @default.
- W2884949378 cites W2792138436 @default.
- W2884949378 cites W319298515 @default.
- W2884949378 cites W4254253432 @default.
- W2884949378 cites W96238125 @default.
- W2884949378 doi "https://doi.org/10.1016/j.watres.2018.07.040" @default.
- W2884949378 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30096692" @default.
- W2884949378 hasPublicationYear "2018" @default.