Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884950191> ?p ?o ?g. }
- W2884950191 endingPage "1251" @default.
- W2884950191 startingPage "1229" @default.
- W2884950191 abstract "Organic Rankine cycle (ORC) engines are suitable for heat recovery from internal combustion engines (ICE) for the purpose of secondary power generation in combined heat and power (CHP) systems. However, trade-offs must be considered between ICE and ORC engine performance in such integrated solutions. The ICE design and operational characteristics influence its own performance, along with the exhaust-gas conditions available as heat source to the ORC engine, impacting ORC design and performance, while the heat-recovery heat exchanger (ORC evaporator) will affect the ICE operation. In this paper, an integrated ICE-ORC CHP whole-system optimisation framework is presented. This differs from other efforts in that we develop and apply a fully-integrated ICE-ORC CHP optimisation framework, considering the design and operation of both the ICE and ORC engines simultaneously within the combined system, to optimise the overall system performance. A dynamic ICE model is developed and validated, along with a steady-state model of subcritical recuperative ORC engines. Both naturally aspirated and turbocharged ICEs are considered, of two different sizes/capacities. Nine substances (covering low-GWP refrigerants and hydrocarbons) are investigated as potential ORC working fluids. The integrated ICE-ORC CHP system is optimised for either maximum total power output, or minimum fuel consumption. Results highlight that by optimising the complete integrated ICE-ORC CHP system simultaneously, the total power output increases by up to 30% in comparison to a nominal system design. In the integrated CHP system, the ICE power output is slightly lower than that obtained for optimal standalone ICE application, as the exhaust-gas temperature increases to promote the bottoming ORC engine performance, whose power increases by 7%. The ORC power output achieved accounts for up to 15% of the total power generated by the integrated system, increasing the system efficiency by up to 11%. When only power optimisation is performed, the specific fuel consumption increases, highlighting that high-power output comes at the cost of higher fuel consumption. In contrast, when specific fuel consumption is used as the objective function (minimised), fuel consumption drops by up to 17%, thereby significantly reducing the operating fuel costs. This study proves that by taking a holistic approach to whole-system ICE-ORC CHP design and operation optimisation, more power can be generated efficiently, with a lower fuel consumption. The findings are relevant to ICE and ORC manufacturers, integrators and installers, since it informs component design, system integration and operation decisions." @default.
- W2884950191 created "2018-08-03" @default.
- W2884950191 creator A5024979251 @default.
- W2884950191 creator A5085879184 @default.
- W2884950191 date "2018-09-01" @default.
- W2884950191 modified "2023-09-26" @default.
- W2884950191 title "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system" @default.
- W2884950191 cites W1625397937 @default.
- W2884950191 cites W1811180006 @default.
- W2884950191 cites W1964223894 @default.
- W2884950191 cites W1964868154 @default.
- W2884950191 cites W1971618026 @default.
- W2884950191 cites W1971790281 @default.
- W2884950191 cites W1979006619 @default.
- W2884950191 cites W1986475541 @default.
- W2884950191 cites W1998595230 @default.
- W2884950191 cites W2016170223 @default.
- W2884950191 cites W2017525679 @default.
- W2884950191 cites W2018380303 @default.
- W2884950191 cites W2026248121 @default.
- W2884950191 cites W2028156155 @default.
- W2884950191 cites W2030972267 @default.
- W2884950191 cites W2034320689 @default.
- W2884950191 cites W2047402713 @default.
- W2884950191 cites W2055641007 @default.
- W2884950191 cites W2057140149 @default.
- W2884950191 cites W2067504734 @default.
- W2884950191 cites W2069253163 @default.
- W2884950191 cites W2080340557 @default.
- W2884950191 cites W2080346354 @default.
- W2884950191 cites W2080434803 @default.
- W2884950191 cites W2082456201 @default.
- W2884950191 cites W2082575837 @default.
- W2884950191 cites W2084591323 @default.
- W2884950191 cites W2086417149 @default.
- W2884950191 cites W2088344498 @default.
- W2884950191 cites W2090911179 @default.
- W2884950191 cites W2091079037 @default.
- W2884950191 cites W2094724742 @default.
- W2884950191 cites W2110069242 @default.
- W2884950191 cites W2173098630 @default.
- W2884950191 cites W2191692052 @default.
- W2884950191 cites W2230034621 @default.
- W2884950191 cites W2338100857 @default.
- W2884950191 cites W2338286961 @default.
- W2884950191 cites W2386172259 @default.
- W2884950191 cites W2409059785 @default.
- W2884950191 cites W2430044984 @default.
- W2884950191 cites W2460290663 @default.
- W2884950191 cites W2469977806 @default.
- W2884950191 cites W2530965826 @default.
- W2884950191 cites W2568271209 @default.
- W2884950191 cites W2588005634 @default.
- W2884950191 cites W2739141341 @default.
- W2884950191 cites W2743304464 @default.
- W2884950191 cites W2754048202 @default.
- W2884950191 cites W2754736428 @default.
- W2884950191 cites W2765184817 @default.
- W2884950191 cites W2766148193 @default.
- W2884950191 cites W2773339123 @default.
- W2884950191 cites W2789881601 @default.
- W2884950191 cites W2795550602 @default.
- W2884950191 cites W2797392086 @default.
- W2884950191 cites W2828143518 @default.
- W2884950191 cites W363468993 @default.
- W2884950191 cites W4237756687 @default.
- W2884950191 cites W4238877030 @default.
- W2884950191 cites W4250161441 @default.
- W2884950191 cites W4362214245 @default.
- W2884950191 cites W831730972 @default.
- W2884950191 cites W849910615 @default.
- W2884950191 doi "https://doi.org/10.1016/j.apenergy.2018.06.022" @default.
- W2884950191 hasPublicationYear "2018" @default.
- W2884950191 type Work @default.
- W2884950191 sameAs 2884950191 @default.
- W2884950191 citedByCount "59" @default.
- W2884950191 countsByYear W28849501912018 @default.
- W2884950191 countsByYear W28849501912019 @default.
- W2884950191 countsByYear W28849501912020 @default.
- W2884950191 countsByYear W28849501912021 @default.
- W2884950191 countsByYear W28849501912022 @default.
- W2884950191 countsByYear W28849501912023 @default.
- W2884950191 crossrefType "journal-article" @default.
- W2884950191 hasAuthorship W2884950191A5024979251 @default.
- W2884950191 hasAuthorship W2884950191A5085879184 @default.
- W2884950191 hasBestOaLocation W28849501911 @default.
- W2884950191 hasConcept C101519877 @default.
- W2884950191 hasConcept C105994980 @default.
- W2884950191 hasConcept C107706546 @default.
- W2884950191 hasConcept C127413603 @default.
- W2884950191 hasConcept C131097465 @default.
- W2884950191 hasConcept C171146098 @default.
- W2884950191 hasConcept C184235594 @default.
- W2884950191 hasConcept C199499590 @default.
- W2884950191 hasConcept C21541133 @default.
- W2884950191 hasConcept C21880701 @default.
- W2884950191 hasConcept C44431628 @default.
- W2884950191 hasConcept C511840579 @default.