Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884967400> ?p ?o ?g. }
- W2884967400 endingPage "961" @default.
- W2884967400 startingPage "945" @default.
- W2884967400 abstract "The present study extends a multi-objective mathematical model in the context of industrial hazardous waste management, which covers the integrated decisions of three levels with locating, vehicle routing, and inventory control. Analyzing these decisions simultaneously not only may lead to the most effective structure in the waste management network, but also may reduce the potential risk of managing the hazardous waste. Furthermore, because of the inherent complexity of the waste management system, uncertainty is inevitable and should be acknowledged to guarantee reliability in the decision-making process. From this perspective, the proposed model is novel in the following three aspects: (1) shifting from a deterministic to stochastic environment; (2) considering a multi-period planning horizon; and (3) incorporating the inventory decisions into the problem. The problem is formulated as a multi-objective stochastic Mixed-Integer Nonlinear Programming (MINLP) model, which can be easily converted into a MILP one. In terms of methodological contribution, a new simheuristic approach that is an integration of Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and Monte Carlo simulation is developed to overcome the stochastic combinatorial optimization problem of this study. Our findings verify the efficiency of the proposed approach as it is able to find a high-quality solution within a relatively reasonable computational time." @default.
- W2884967400 created "2018-08-03" @default.
- W2884967400 creator A5010742147 @default.
- W2884967400 creator A5039269418 @default.
- W2884967400 creator A5065857937 @default.
- W2884967400 date "2019-02-01" @default.
- W2884967400 modified "2023-10-18" @default.
- W2884967400 title "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation" @default.
- W2884967400 cites W1974082921 @default.
- W2884967400 cites W1983258309 @default.
- W2884967400 cites W1987568343 @default.
- W2884967400 cites W1990518444 @default.
- W2884967400 cites W1998963937 @default.
- W2884967400 cites W2001012897 @default.
- W2884967400 cites W2008477533 @default.
- W2884967400 cites W2017284051 @default.
- W2884967400 cites W2025859861 @default.
- W2884967400 cites W2027349680 @default.
- W2884967400 cites W2028454779 @default.
- W2884967400 cites W2031792434 @default.
- W2884967400 cites W2041215069 @default.
- W2884967400 cites W2059044778 @default.
- W2884967400 cites W2066024705 @default.
- W2884967400 cites W2066420949 @default.
- W2884967400 cites W2071312023 @default.
- W2884967400 cites W2084980894 @default.
- W2884967400 cites W2091937574 @default.
- W2884967400 cites W2096693659 @default.
- W2884967400 cites W2112892149 @default.
- W2884967400 cites W2133679474 @default.
- W2884967400 cites W2145370434 @default.
- W2884967400 cites W2151889801 @default.
- W2884967400 cites W2152258334 @default.
- W2884967400 cites W2153275544 @default.
- W2884967400 cites W2154524377 @default.
- W2884967400 cites W2164976179 @default.
- W2884967400 cites W2168127659 @default.
- W2884967400 cites W2232436584 @default.
- W2884967400 cites W2282735730 @default.
- W2884967400 cites W2285957403 @default.
- W2884967400 cites W2290338754 @default.
- W2884967400 cites W2296173565 @default.
- W2884967400 cites W2409758666 @default.
- W2884967400 cites W2409937651 @default.
- W2884967400 cites W2484647765 @default.
- W2884967400 cites W2504249084 @default.
- W2884967400 cites W2567240797 @default.
- W2884967400 cites W2599432374 @default.
- W2884967400 cites W2607489976 @default.
- W2884967400 cites W2724982611 @default.
- W2884967400 cites W2754075025 @default.
- W2884967400 cites W4248316657 @default.
- W2884967400 doi "https://doi.org/10.1016/j.ejor.2018.07.024" @default.
- W2884967400 hasPublicationYear "2019" @default.
- W2884967400 type Work @default.
- W2884967400 sameAs 2884967400 @default.
- W2884967400 citedByCount "117" @default.
- W2884967400 countsByYear W28849674002019 @default.
- W2884967400 countsByYear W28849674002020 @default.
- W2884967400 countsByYear W28849674002021 @default.
- W2884967400 countsByYear W28849674002022 @default.
- W2884967400 countsByYear W28849674002023 @default.
- W2884967400 crossrefType "journal-article" @default.
- W2884967400 hasAuthorship W2884967400A5010742147 @default.
- W2884967400 hasAuthorship W2884967400A5039269418 @default.
- W2884967400 hasAuthorship W2884967400A5065857937 @default.
- W2884967400 hasConcept C105795698 @default.
- W2884967400 hasConcept C111696304 @default.
- W2884967400 hasConcept C11413529 @default.
- W2884967400 hasConcept C121332964 @default.
- W2884967400 hasConcept C126255220 @default.
- W2884967400 hasConcept C127413603 @default.
- W2884967400 hasConcept C137631369 @default.
- W2884967400 hasConcept C151730666 @default.
- W2884967400 hasConcept C163258240 @default.
- W2884967400 hasConcept C19499675 @default.
- W2884967400 hasConcept C22507642 @default.
- W2884967400 hasConcept C2779343474 @default.
- W2884967400 hasConcept C28761237 @default.
- W2884967400 hasConcept C31258907 @default.
- W2884967400 hasConcept C33923547 @default.
- W2884967400 hasConcept C41008148 @default.
- W2884967400 hasConcept C42475967 @default.
- W2884967400 hasConcept C43214815 @default.
- W2884967400 hasConcept C548081761 @default.
- W2884967400 hasConcept C62520636 @default.
- W2884967400 hasConcept C74172769 @default.
- W2884967400 hasConcept C86803240 @default.
- W2884967400 hasConcept C8880873 @default.
- W2884967400 hasConceptScore W2884967400C105795698 @default.
- W2884967400 hasConceptScore W2884967400C111696304 @default.
- W2884967400 hasConceptScore W2884967400C11413529 @default.
- W2884967400 hasConceptScore W2884967400C121332964 @default.
- W2884967400 hasConceptScore W2884967400C126255220 @default.
- W2884967400 hasConceptScore W2884967400C127413603 @default.
- W2884967400 hasConceptScore W2884967400C137631369 @default.
- W2884967400 hasConceptScore W2884967400C151730666 @default.
- W2884967400 hasConceptScore W2884967400C163258240 @default.