Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884983847> ?p ?o ?g. }
- W2884983847 endingPage "1739" @default.
- W2884983847 startingPage "1726" @default.
- W2884983847 abstract "The high complexity of multi-objective joint reservoir operation imposes challenging barriers to the pursuit of optimal hydroelectricity output. Inasmuch as multi-objective evolution optimization algorithms, including the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), are trapped in the curse of dimensionality which could not be effectively solved the multi-objective operation of more than ten reservoirs. This study proposes a methodology that integrate the NSGA-II with a successive approximation approach to optimize the hydropower output for conquering the curse of dimensionality under the joint operation of 21 mega cascade reservoirs located in the Upper Yangtze River Basin of China. The successive approximation approach could effectively decompose the mutually related M-dimensional problem into M individual one-dimensional problems, which ingeniously overcomes the curse of dimensionality. The proposed model is anchored with strategies of advancing impoundment timings and raising water levels of cascade reservoirs. We show that our methodology, without adding or upgrading hydraulic infrastructures, empowers the joint operation to reach 110.79 billion kW·h/year (9.8% improvement) in hydropower output, which could reduce 86.97 billion kg/year in CO2 emission, and to provide 44.97 billion m3/year in water supply with flood risk less than 0.016. The results suggest that our methodology can spur hydroelectricity output to support China’s tactics in fulfilling the pledge of carbon emission reduction and non-fossil energy expansion to 20% by 2030." @default.
- W2884983847 created "2018-08-03" @default.
- W2884983847 creator A5011759891 @default.
- W2884983847 creator A5032842248 @default.
- W2884983847 creator A5068171379 @default.
- W2884983847 creator A5084718363 @default.
- W2884983847 date "2018-10-01" @default.
- W2884983847 modified "2023-10-11" @default.
- W2884983847 title "Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation" @default.
- W2884983847 cites W1833813147 @default.
- W2884983847 cites W1977135757 @default.
- W2884983847 cites W2014804254 @default.
- W2884983847 cites W2034306565 @default.
- W2884983847 cites W2039579791 @default.
- W2884983847 cites W2057704913 @default.
- W2884983847 cites W2058658017 @default.
- W2884983847 cites W2072286814 @default.
- W2884983847 cites W2081070486 @default.
- W2884983847 cites W2090631446 @default.
- W2884983847 cites W2119039431 @default.
- W2884983847 cites W2126053484 @default.
- W2884983847 cites W2126105956 @default.
- W2884983847 cites W2128716097 @default.
- W2884983847 cites W2149420896 @default.
- W2884983847 cites W2189750229 @default.
- W2884983847 cites W2222859736 @default.
- W2884983847 cites W2235180843 @default.
- W2884983847 cites W2235437109 @default.
- W2884983847 cites W2255781275 @default.
- W2884983847 cites W2300402820 @default.
- W2884983847 cites W2316912121 @default.
- W2884983847 cites W2346170315 @default.
- W2884983847 cites W2396643288 @default.
- W2884983847 cites W2499584399 @default.
- W2884983847 cites W2507892057 @default.
- W2884983847 cites W2511328323 @default.
- W2884983847 cites W2529332756 @default.
- W2884983847 cites W2552145348 @default.
- W2884983847 cites W2561523464 @default.
- W2884983847 cites W2604540623 @default.
- W2884983847 cites W2607909301 @default.
- W2884983847 cites W2628436715 @default.
- W2884983847 cites W2741950990 @default.
- W2884983847 cites W2760889115 @default.
- W2884983847 cites W2767525149 @default.
- W2884983847 cites W4256098588 @default.
- W2884983847 cites W997688264 @default.
- W2884983847 doi "https://doi.org/10.1016/j.apenergy.2018.07.078" @default.
- W2884983847 hasPublicationYear "2018" @default.
- W2884983847 type Work @default.
- W2884983847 sameAs 2884983847 @default.
- W2884983847 citedByCount "28" @default.
- W2884983847 countsByYear W28849838472019 @default.
- W2884983847 countsByYear W28849838472020 @default.
- W2884983847 countsByYear W28849838472021 @default.
- W2884983847 countsByYear W28849838472022 @default.
- W2884983847 countsByYear W28849838472023 @default.
- W2884983847 crossrefType "journal-article" @default.
- W2884983847 hasAuthorship W2884983847A5011759891 @default.
- W2884983847 hasAuthorship W2884983847A5032842248 @default.
- W2884983847 hasAuthorship W2884983847A5068171379 @default.
- W2884983847 hasAuthorship W2884983847A5084718363 @default.
- W2884983847 hasConcept C111030470 @default.
- W2884983847 hasConcept C111696304 @default.
- W2884983847 hasConcept C11413529 @default.
- W2884983847 hasConcept C119599485 @default.
- W2884983847 hasConcept C126255220 @default.
- W2884983847 hasConcept C127413603 @default.
- W2884983847 hasConcept C138885662 @default.
- W2884983847 hasConcept C154945302 @default.
- W2884983847 hasConcept C17744445 @default.
- W2884983847 hasConcept C199539241 @default.
- W2884983847 hasConcept C27206212 @default.
- W2884983847 hasConcept C2780643141 @default.
- W2884983847 hasConcept C33923547 @default.
- W2884983847 hasConcept C34146451 @default.
- W2884983847 hasConcept C39432304 @default.
- W2884983847 hasConcept C40675005 @default.
- W2884983847 hasConcept C41008148 @default.
- W2884983847 hasConcept C42360764 @default.
- W2884983847 hasConcept C46686674 @default.
- W2884983847 hasConcept C74256435 @default.
- W2884983847 hasConcept C8880873 @default.
- W2884983847 hasConcept C92311004 @default.
- W2884983847 hasConceptScore W2884983847C111030470 @default.
- W2884983847 hasConceptScore W2884983847C111696304 @default.
- W2884983847 hasConceptScore W2884983847C11413529 @default.
- W2884983847 hasConceptScore W2884983847C119599485 @default.
- W2884983847 hasConceptScore W2884983847C126255220 @default.
- W2884983847 hasConceptScore W2884983847C127413603 @default.
- W2884983847 hasConceptScore W2884983847C138885662 @default.
- W2884983847 hasConceptScore W2884983847C154945302 @default.
- W2884983847 hasConceptScore W2884983847C17744445 @default.
- W2884983847 hasConceptScore W2884983847C199539241 @default.
- W2884983847 hasConceptScore W2884983847C27206212 @default.
- W2884983847 hasConceptScore W2884983847C2780643141 @default.
- W2884983847 hasConceptScore W2884983847C33923547 @default.
- W2884983847 hasConceptScore W2884983847C34146451 @default.