Matches in SemOpenAlex for { <https://semopenalex.org/work/W2884991355> ?p ?o ?g. }
- W2884991355 endingPage "816" @default.
- W2884991355 startingPage "799" @default.
- W2884991355 abstract "Advanced neuroimaging technology has enabled the study of both the structure and function of the brain in more detail than before. The high volume of multisubject, multimodal neuroimaging data poses challenges to the signal processing community as the data is high-dimensional, sensitive to noise, and suffers from high variability across subjects. While many discoveries in neuroscience have been made using massively univariate statistics or time-series analysis, there has been a paradigm shift toward the use of multivariate analysis, graph theoretic methods, and machine learning to decode brain function. Tools from network science and graph theory have been employed to analyze the functional connectivity of the brain by associating nodes with distinct brain regions and edges with pairwise interactions between them. However, these methods focus solely on the network topology and organization without directly correlating the activity in these brain regions with the underlying network. Graph signal processing (GSP) offers a promising tool to address this important gap in the study of neuronal networks. This new framework merges neuroimaging data such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) with the underlying graphical structure to extract rich brain activity missed by analyzing the networks or the signals alone. Given a connectivity network and neuroimaging signals defined on this network, we first illustrate how GSP can be used for robust dimensionality reduction, signal detection and classification, and filtering to extract brain activity corresponding to different levels of spatial variation. We then present GSP-based methods for learning functional connectivity networks given the observed neuroimaging data and the use of graph-based spectral analysis for data and network denoising. Finally, we present how GSP methods can be extended to study the temporal dynamics of functional connectivity networks of the brain." @default.
- W2884991355 created "2018-08-03" @default.
- W2884991355 creator A5038586596 @default.
- W2884991355 creator A5066991784 @default.
- W2884991355 date "2018-01-01" @default.
- W2884991355 modified "2023-10-02" @default.
- W2884991355 title "Graph Signal Processing on Neuronal Networks" @default.
- W2884991355 cites W1490480470 @default.
- W2884991355 cites W1764144999 @default.
- W2884991355 cites W1979426401 @default.
- W2884991355 cites W1983451956 @default.
- W2884991355 cites W1987924998 @default.
- W2884991355 cites W1992259561 @default.
- W2884991355 cites W1994992196 @default.
- W2884991355 cites W1999653836 @default.
- W2884991355 cites W2026384313 @default.
- W2884991355 cites W2033881971 @default.
- W2884991355 cites W2034515263 @default.
- W2884991355 cites W2037035617 @default.
- W2884991355 cites W2041951497 @default.
- W2884991355 cites W2047700897 @default.
- W2884991355 cites W2050177577 @default.
- W2884991355 cites W2064855647 @default.
- W2884991355 cites W2094426896 @default.
- W2884991355 cites W2101491865 @default.
- W2884991355 cites W2106636764 @default.
- W2884991355 cites W2112639978 @default.
- W2884991355 cites W2115810652 @default.
- W2884991355 cites W2125299581 @default.
- W2884991355 cites W2126838454 @default.
- W2884991355 cites W2127786259 @default.
- W2884991355 cites W2128314959 @default.
- W2884991355 cites W2130654277 @default.
- W2884991355 cites W2132555912 @default.
- W2884991355 cites W2135202250 @default.
- W2884991355 cites W2143796095 @default.
- W2884991355 cites W2145962650 @default.
- W2884991355 cites W2146406922 @default.
- W2884991355 cites W2150967988 @default.
- W2884991355 cites W2158787690 @default.
- W2884991355 cites W2169402628 @default.
- W2884991355 cites W2182708456 @default.
- W2884991355 cites W2259160646 @default.
- W2884991355 cites W3102500902 @default.
- W2884991355 cites W3105057226 @default.
- W2884991355 doi "https://doi.org/10.1016/b978-0-12-813677-5.00031-6" @default.
- W2884991355 hasPublicationYear "2018" @default.
- W2884991355 type Work @default.
- W2884991355 sameAs 2884991355 @default.
- W2884991355 citedByCount "2" @default.
- W2884991355 countsByYear W28849913552021 @default.
- W2884991355 countsByYear W28849913552023 @default.
- W2884991355 crossrefType "book-chapter" @default.
- W2884991355 hasAuthorship W2884991355A5038586596 @default.
- W2884991355 hasAuthorship W2884991355A5066991784 @default.
- W2884991355 hasConcept C106937863 @default.
- W2884991355 hasConcept C114614502 @default.
- W2884991355 hasConcept C119857082 @default.
- W2884991355 hasConcept C132525143 @default.
- W2884991355 hasConcept C136764020 @default.
- W2884991355 hasConcept C137753397 @default.
- W2884991355 hasConcept C153180895 @default.
- W2884991355 hasConcept C154945302 @default.
- W2884991355 hasConcept C15744967 @default.
- W2884991355 hasConcept C161584116 @default.
- W2884991355 hasConcept C169760540 @default.
- W2884991355 hasConcept C199163554 @default.
- W2884991355 hasConcept C2779226451 @default.
- W2884991355 hasConcept C3018011982 @default.
- W2884991355 hasConcept C33923547 @default.
- W2884991355 hasConcept C34947359 @default.
- W2884991355 hasConcept C41008148 @default.
- W2884991355 hasConcept C45715564 @default.
- W2884991355 hasConcept C58693492 @default.
- W2884991355 hasConcept C70518039 @default.
- W2884991355 hasConcept C80444323 @default.
- W2884991355 hasConcept C88230418 @default.
- W2884991355 hasConcept C97820695 @default.
- W2884991355 hasConceptScore W2884991355C106937863 @default.
- W2884991355 hasConceptScore W2884991355C114614502 @default.
- W2884991355 hasConceptScore W2884991355C119857082 @default.
- W2884991355 hasConceptScore W2884991355C132525143 @default.
- W2884991355 hasConceptScore W2884991355C136764020 @default.
- W2884991355 hasConceptScore W2884991355C137753397 @default.
- W2884991355 hasConceptScore W2884991355C153180895 @default.
- W2884991355 hasConceptScore W2884991355C154945302 @default.
- W2884991355 hasConceptScore W2884991355C15744967 @default.
- W2884991355 hasConceptScore W2884991355C161584116 @default.
- W2884991355 hasConceptScore W2884991355C169760540 @default.
- W2884991355 hasConceptScore W2884991355C199163554 @default.
- W2884991355 hasConceptScore W2884991355C2779226451 @default.
- W2884991355 hasConceptScore W2884991355C3018011982 @default.
- W2884991355 hasConceptScore W2884991355C33923547 @default.
- W2884991355 hasConceptScore W2884991355C34947359 @default.
- W2884991355 hasConceptScore W2884991355C41008148 @default.
- W2884991355 hasConceptScore W2884991355C45715564 @default.
- W2884991355 hasConceptScore W2884991355C58693492 @default.
- W2884991355 hasConceptScore W2884991355C70518039 @default.