Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885087015> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2885087015 abstract "Author(s): Seo, Won-Ki | Advisor(s): Beare, Brendan K | Abstract: In data rich environments we may sometimes deal with time series of infinite dimensional objects such as smooth curves, square-integrable functions or probability density functions. The so-called functional time series analysis considering such time series has been intensively developed by many authors. For stationary functional time series, we already have well-developed theoretical results. On the other hand, the literature on nonstationary functional time series is not rich enough yet; we only have a few recent papers that consider nonstationary functional time series. This dissertation deals with functional cointegrated linear processes and develops a generalization of the Granger-Johansen representation theory in Hilbert spaces and Banach spaces. Given the scarcity of the existing literature on nonstationary functional time series, I believe that my results pave the way for the development of statistical methods involving functional time series exhibiting the random walk-type nonstationarity. The first chapter concerns cointegrated linear processes in an arbitrary complex Hilbert space. We extend the notion of cointegration for time series taking values in such a Hilbert space, and provide generalized notions of I(0) and I(1) sequences. In the chapter we specifically show that the cointegrating space for an I(1) process may be sensibly defined as the kernel of the long run covariance operator of its first difference. Another main result of the chapter is a generalization of the Granger-Johansen representation theorem for I(1) autoregressive processes. We will observe that a geometric reformulation of the Johansen I(1) condition is useful to our Hilbert space setting, and it will be shown that a generalization of the Granger-Johansen theorem is derived based on this observation.The second chapter is more focused on the Granger-Johansen theory in an arbitrary complex Hilbert space setting. We provide a generalization of the representation theorems for I(1) and I(2) autoregressive processes taking values in such a Hilbert space. A big difference from the previous chapter is that we rely on rigorous analytic operator-valued function theory. The most important input for our representation theory in the chapter is the so-called analytic Fredholm theorem, which will turn out to be useful. We will demonstrate this in detail. In the last chapter, we will show that our representation theory based on the analytic Fredholm theorem can be extended to a Banach space setting. Specifically, we study the inversion of a holomorphic Fredholm operator-valued function in detail, and provide a closed-form expression of the inverse. Applying these results, we obtain our representation theory in an arbitrary complex separable Banach space. One meaningful aspect of this chapter is that we obtain a generalization of the Granger-Johansen theory without the help of rich geometric structure of a Hilbert space." @default.
- W2885087015 created "2018-08-22" @default.
- W2885087015 creator A5059344939 @default.
- W2885087015 date "2018-01-01" @default.
- W2885087015 modified "2023-09-27" @default.
- W2885087015 title "Representation Theory for Cointegrated Functional Time Series" @default.
- W2885087015 hasPublicationYear "2018" @default.
- W2885087015 type Work @default.
- W2885087015 sameAs 2885087015 @default.
- W2885087015 citedByCount "0" @default.
- W2885087015 crossrefType "journal-article" @default.
- W2885087015 hasAuthorship W2885087015A5059344939 @default.
- W2885087015 hasConcept C105795698 @default.
- W2885087015 hasConcept C134306372 @default.
- W2885087015 hasConcept C143724316 @default.
- W2885087015 hasConcept C145162277 @default.
- W2885087015 hasConcept C149782125 @default.
- W2885087015 hasConcept C151406439 @default.
- W2885087015 hasConcept C151730666 @default.
- W2885087015 hasConcept C159877910 @default.
- W2885087015 hasConcept C177148314 @default.
- W2885087015 hasConcept C17744445 @default.
- W2885087015 hasConcept C199539241 @default.
- W2885087015 hasConcept C202444582 @default.
- W2885087015 hasConcept C2776359362 @default.
- W2885087015 hasConcept C33923547 @default.
- W2885087015 hasConcept C51820054 @default.
- W2885087015 hasConcept C62799726 @default.
- W2885087015 hasConcept C71176878 @default.
- W2885087015 hasConcept C80884492 @default.
- W2885087015 hasConcept C8272713 @default.
- W2885087015 hasConcept C86803240 @default.
- W2885087015 hasConcept C94625758 @default.
- W2885087015 hasConceptScore W2885087015C105795698 @default.
- W2885087015 hasConceptScore W2885087015C134306372 @default.
- W2885087015 hasConceptScore W2885087015C143724316 @default.
- W2885087015 hasConceptScore W2885087015C145162277 @default.
- W2885087015 hasConceptScore W2885087015C149782125 @default.
- W2885087015 hasConceptScore W2885087015C151406439 @default.
- W2885087015 hasConceptScore W2885087015C151730666 @default.
- W2885087015 hasConceptScore W2885087015C159877910 @default.
- W2885087015 hasConceptScore W2885087015C177148314 @default.
- W2885087015 hasConceptScore W2885087015C17744445 @default.
- W2885087015 hasConceptScore W2885087015C199539241 @default.
- W2885087015 hasConceptScore W2885087015C202444582 @default.
- W2885087015 hasConceptScore W2885087015C2776359362 @default.
- W2885087015 hasConceptScore W2885087015C33923547 @default.
- W2885087015 hasConceptScore W2885087015C51820054 @default.
- W2885087015 hasConceptScore W2885087015C62799726 @default.
- W2885087015 hasConceptScore W2885087015C71176878 @default.
- W2885087015 hasConceptScore W2885087015C80884492 @default.
- W2885087015 hasConceptScore W2885087015C8272713 @default.
- W2885087015 hasConceptScore W2885087015C86803240 @default.
- W2885087015 hasConceptScore W2885087015C94625758 @default.
- W2885087015 hasLocation W28850870151 @default.
- W2885087015 hasOpenAccess W2885087015 @default.
- W2885087015 hasPrimaryLocation W28850870151 @default.
- W2885087015 hasRelatedWork W1265177368 @default.
- W2885087015 hasRelatedWork W1529408235 @default.
- W2885087015 hasRelatedWork W2069413592 @default.
- W2885087015 hasRelatedWork W2072709087 @default.
- W2885087015 hasRelatedWork W2092778933 @default.
- W2885087015 hasRelatedWork W2137388165 @default.
- W2885087015 hasRelatedWork W2337134722 @default.
- W2885087015 hasRelatedWork W2481315426 @default.
- W2885087015 hasRelatedWork W2504047832 @default.
- W2885087015 hasRelatedWork W2610672985 @default.
- W2885087015 hasRelatedWork W2782603730 @default.
- W2885087015 hasRelatedWork W2884506503 @default.
- W2885087015 hasRelatedWork W2905307865 @default.
- W2885087015 hasRelatedWork W2963316687 @default.
- W2885087015 hasRelatedWork W3162763156 @default.
- W2885087015 hasRelatedWork W3177227004 @default.
- W2885087015 hasRelatedWork W3195847826 @default.
- W2885087015 hasRelatedWork W75971611 @default.
- W2885087015 hasRelatedWork W1838970289 @default.
- W2885087015 hasRelatedWork W2520384976 @default.
- W2885087015 isParatext "false" @default.
- W2885087015 isRetracted "false" @default.
- W2885087015 magId "2885087015" @default.
- W2885087015 workType "article" @default.