Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885128148> ?p ?o ?g. }
- W2885128148 endingPage "4745" @default.
- W2885128148 startingPage "4738" @default.
- W2885128148 abstract "A robust importance-sampling algorithm for mapping free-energy surfaces over geometrical variables, coined meta-eABF, is introduced. This algorithm shaves the free-energy barriers and floods valleys by incorporating a history-dependent potential term in the extended adaptive biasing force (eABF) framework. Numerical applications on both toy models and nontrivial examples indicate that meta-eABF explores the free-energy surface significantly faster than either eABF or metadynamics (MtD) alone, without the need to stratify the reaction pathway. In some favorable cases, meta-eABF can be as much as five times faster than other importance-sampling algorithms. Many of the shortcomings inherent to eABF and MtD, like kinetic trapping in regions of configurational space already adequately sampled, the requirement of prior knowledge of the free-energy landscape to set up the simulation, are readily eliminated in meta-eABF. Meta-eABF, therefore, represents an appealing solution for a broad range of applications, especially when both eABF and MtD fail to achieve the desired result." @default.
- W2885128148 created "2018-08-22" @default.
- W2885128148 creator A5010656224 @default.
- W2885128148 creator A5058699852 @default.
- W2885128148 creator A5067685274 @default.
- W2885128148 creator A5067789340 @default.
- W2885128148 creator A5076283101 @default.
- W2885128148 creator A5080251724 @default.
- W2885128148 date "2018-08-03" @default.
- W2885128148 modified "2023-10-16" @default.
- W2885128148 title "Zooming across the Free-Energy Landscape: Shaving Barriers, and Flooding Valleys" @default.
- W2885128148 cites W1556106311 @default.
- W2885128148 cites W1977569451 @default.
- W2885128148 cites W1984604072 @default.
- W2885128148 cites W1987048011 @default.
- W2885128148 cites W1988159335 @default.
- W2885128148 cites W1989992848 @default.
- W2885128148 cites W1993177346 @default.
- W2885128148 cites W1995907662 @default.
- W2885128148 cites W2011378420 @default.
- W2885128148 cites W2014574246 @default.
- W2885128148 cites W2020851807 @default.
- W2885128148 cites W2032518047 @default.
- W2885128148 cites W2036108598 @default.
- W2885128148 cites W2042821667 @default.
- W2885128148 cites W2053081979 @default.
- W2885128148 cites W2057806291 @default.
- W2885128148 cites W2058971275 @default.
- W2885128148 cites W2062393760 @default.
- W2885128148 cites W2065919348 @default.
- W2885128148 cites W2065965502 @default.
- W2885128148 cites W2075218435 @default.
- W2885128148 cites W2146411229 @default.
- W2885128148 cites W2146575889 @default.
- W2885128148 cites W2149655632 @default.
- W2885128148 cites W2150981663 @default.
- W2885128148 cites W2314730640 @default.
- W2885128148 cites W2324354118 @default.
- W2885128148 cites W2326979787 @default.
- W2885128148 cites W2331705195 @default.
- W2885128148 cites W2332177667 @default.
- W2885128148 cites W2343931134 @default.
- W2885128148 cites W2463208053 @default.
- W2885128148 cites W2515801595 @default.
- W2885128148 cites W2563321337 @default.
- W2885128148 cites W2592925374 @default.
- W2885128148 cites W2607626658 @default.
- W2885128148 cites W2782363882 @default.
- W2885128148 cites W2792143480 @default.
- W2885128148 cites W2795981386 @default.
- W2885128148 cites W2803333743 @default.
- W2885128148 cites W2807127392 @default.
- W2885128148 cites W4233702469 @default.
- W2885128148 cites W4255584963 @default.
- W2885128148 doi "https://doi.org/10.1021/acs.jpclett.8b01994" @default.
- W2885128148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30074802" @default.
- W2885128148 hasPublicationYear "2018" @default.
- W2885128148 type Work @default.
- W2885128148 sameAs 2885128148 @default.
- W2885128148 citedByCount "91" @default.
- W2885128148 countsByYear W28851281482019 @default.
- W2885128148 countsByYear W28851281482020 @default.
- W2885128148 countsByYear W28851281482021 @default.
- W2885128148 countsByYear W28851281482022 @default.
- W2885128148 countsByYear W28851281482023 @default.
- W2885128148 crossrefType "journal-article" @default.
- W2885128148 hasAuthorship W2885128148A5010656224 @default.
- W2885128148 hasAuthorship W2885128148A5058699852 @default.
- W2885128148 hasAuthorship W2885128148A5067685274 @default.
- W2885128148 hasAuthorship W2885128148A5067789340 @default.
- W2885128148 hasAuthorship W2885128148A5076283101 @default.
- W2885128148 hasAuthorship W2885128148A5080251724 @default.
- W2885128148 hasConcept C105795698 @default.
- W2885128148 hasConcept C11413529 @default.
- W2885128148 hasConcept C119621388 @default.
- W2885128148 hasConcept C120665830 @default.
- W2885128148 hasConcept C121332964 @default.
- W2885128148 hasConcept C124913957 @default.
- W2885128148 hasConcept C15336307 @default.
- W2885128148 hasConcept C186370098 @default.
- W2885128148 hasConcept C33923547 @default.
- W2885128148 hasConcept C41008148 @default.
- W2885128148 hasConcept C59593255 @default.
- W2885128148 hasConcept C62520636 @default.
- W2885128148 hasConcept C62752575 @default.
- W2885128148 hasConcept C97355855 @default.
- W2885128148 hasConceptScore W2885128148C105795698 @default.
- W2885128148 hasConceptScore W2885128148C11413529 @default.
- W2885128148 hasConceptScore W2885128148C119621388 @default.
- W2885128148 hasConceptScore W2885128148C120665830 @default.
- W2885128148 hasConceptScore W2885128148C121332964 @default.
- W2885128148 hasConceptScore W2885128148C124913957 @default.
- W2885128148 hasConceptScore W2885128148C15336307 @default.
- W2885128148 hasConceptScore W2885128148C186370098 @default.
- W2885128148 hasConceptScore W2885128148C33923547 @default.
- W2885128148 hasConceptScore W2885128148C41008148 @default.
- W2885128148 hasConceptScore W2885128148C59593255 @default.
- W2885128148 hasConceptScore W2885128148C62520636 @default.