Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885148117> ?p ?o ?g. }
- W2885148117 endingPage "1850033" @default.
- W2885148117 startingPage "1850033" @default.
- W2885148117 abstract "The clustering is an important data analysis technique. However, clustering high-dimensional data like documents needs more effort in order to extract the richness relevant information hidden in the multidimensionality space. Recently, document clustering algorithms based on metaheuristics have demonstrated their efficiency to explore the search area and to achieve the global best solution rather than the local one. However, most of these algorithms are not practical and suffer from some limitations, including the requirement of the knowledge of the number of clusters in advance, they are neither incremental nor extensible and the documents are indexed by high-dimensional and sparse matrix. In order to overcome these limitations, we propose in this paper, a new dynamic and incremental approach (CS_LSI) for document clustering based on the recent cuckoo search (CS) optimization and latent semantic indexing (LSI). Conducted Experiments on four well-known high-dimensional text datasets show the efficiency of LSI model to reduce the dimensionality space with more precision and less computational time. Also, the proposed CS_LSI determines the number of clusters automatically by employing a new proposed index, focused on significant distance measure. This later is also used in the incremental mode and to detect the outlier documents by maintaining a more coherent clusters. Furthermore, comparison with conventional document clustering algorithms shows the superiority of CS_LSI to achieve a high quality of clustering." @default.
- W2885148117 created "2018-08-22" @default.
- W2885148117 creator A5027682375 @default.
- W2885148117 creator A5030380259 @default.
- W2885148117 creator A5075337649 @default.
- W2885148117 date "2018-09-01" @default.
- W2885148117 modified "2023-09-25" @default.
- W2885148117 title "High-Dimensional Text Datasets Clustering Algorithm Based on Cuckoo Search and Latent Semantic Indexing" @default.
- W2885148117 cites W106584446 @default.
- W2885148117 cites W1503798106 @default.
- W2885148117 cites W1566759943 @default.
- W2885148117 cites W159579334 @default.
- W2885148117 cites W1991224261 @default.
- W2885148117 cites W1992419399 @default.
- W2885148117 cites W1994219917 @default.
- W2885148117 cites W2000135657 @default.
- W2885148117 cites W2004641810 @default.
- W2885148117 cites W2006636107 @default.
- W2885148117 cites W2011430131 @default.
- W2885148117 cites W2015516365 @default.
- W2885148117 cites W2038413887 @default.
- W2885148117 cites W2046856687 @default.
- W2885148117 cites W2054833259 @default.
- W2885148117 cites W2064922989 @default.
- W2885148117 cites W2067697112 @default.
- W2885148117 cites W2073849744 @default.
- W2885148117 cites W2076408892 @default.
- W2885148117 cites W2077430530 @default.
- W2885148117 cites W2079234336 @default.
- W2885148117 cites W2086708643 @default.
- W2885148117 cites W2087962968 @default.
- W2885148117 cites W2094053777 @default.
- W2885148117 cites W2098162425 @default.
- W2885148117 cites W2108323654 @default.
- W2885148117 cites W2120529703 @default.
- W2885148117 cites W2121577696 @default.
- W2885148117 cites W2147152072 @default.
- W2885148117 cites W2153233077 @default.
- W2885148117 cites W2153879578 @default.
- W2885148117 cites W2165612380 @default.
- W2885148117 cites W2399728233 @default.
- W2885148117 cites W2495427531 @default.
- W2885148117 cites W2603826157 @default.
- W2885148117 cites W2729840144 @default.
- W2885148117 cites W2768006893 @default.
- W2885148117 cites W2774324652 @default.
- W2885148117 cites W4255780915 @default.
- W2885148117 cites W79289736 @default.
- W2885148117 cites W86784404 @default.
- W2885148117 doi "https://doi.org/10.1142/s0219649218500338" @default.
- W2885148117 hasPublicationYear "2018" @default.
- W2885148117 type Work @default.
- W2885148117 sameAs 2885148117 @default.
- W2885148117 citedByCount "12" @default.
- W2885148117 countsByYear W28851481172019 @default.
- W2885148117 countsByYear W28851481172020 @default.
- W2885148117 countsByYear W28851481172021 @default.
- W2885148117 countsByYear W28851481172022 @default.
- W2885148117 countsByYear W28851481172023 @default.
- W2885148117 crossrefType "journal-article" @default.
- W2885148117 hasAuthorship W2885148117A5027682375 @default.
- W2885148117 hasAuthorship W2885148117A5030380259 @default.
- W2885148117 hasAuthorship W2885148117A5075337649 @default.
- W2885148117 hasConcept C105611402 @default.
- W2885148117 hasConcept C111030470 @default.
- W2885148117 hasConcept C117241572 @default.
- W2885148117 hasConcept C119857082 @default.
- W2885148117 hasConcept C124101348 @default.
- W2885148117 hasConcept C154945302 @default.
- W2885148117 hasConcept C177937566 @default.
- W2885148117 hasConcept C184509293 @default.
- W2885148117 hasConcept C41008148 @default.
- W2885148117 hasConcept C73555534 @default.
- W2885148117 hasConcept C75165309 @default.
- W2885148117 hasConcept C85617194 @default.
- W2885148117 hasConceptScore W2885148117C105611402 @default.
- W2885148117 hasConceptScore W2885148117C111030470 @default.
- W2885148117 hasConceptScore W2885148117C117241572 @default.
- W2885148117 hasConceptScore W2885148117C119857082 @default.
- W2885148117 hasConceptScore W2885148117C124101348 @default.
- W2885148117 hasConceptScore W2885148117C154945302 @default.
- W2885148117 hasConceptScore W2885148117C177937566 @default.
- W2885148117 hasConceptScore W2885148117C184509293 @default.
- W2885148117 hasConceptScore W2885148117C41008148 @default.
- W2885148117 hasConceptScore W2885148117C73555534 @default.
- W2885148117 hasConceptScore W2885148117C75165309 @default.
- W2885148117 hasConceptScore W2885148117C85617194 @default.
- W2885148117 hasIssue "03" @default.
- W2885148117 hasLocation W28851481171 @default.
- W2885148117 hasOpenAccess W2885148117 @default.
- W2885148117 hasPrimaryLocation W28851481171 @default.
- W2885148117 hasRelatedWork W1509595664 @default.
- W2885148117 hasRelatedWork W1571495475 @default.
- W2885148117 hasRelatedWork W2040963032 @default.
- W2885148117 hasRelatedWork W2124872524 @default.
- W2885148117 hasRelatedWork W2127511218 @default.
- W2885148117 hasRelatedWork W2406932278 @default.
- W2885148117 hasRelatedWork W2505602116 @default.