Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885152346> ?p ?o ?g. }
- W2885152346 endingPage "8" @default.
- W2885152346 startingPage "1" @default.
- W2885152346 abstract "Mean sea level (MSL) has been used as a vertical datum for geodetic levelling and mapping in most countries all over the world. This is because the MSL approximates the geoid and serves as a realist reference surface that could be determined mostly through tide measurements over a period of time. However, sea levels have been rising over the years due to global warming and its associated climate change which continuous to melt ice sheets around the Polar Regions. This phenomenon is likely to affect the reliability of MSL, thus it is important to determine the local MSL at regular time periods. This study assessed the performance of Artificial Neural Network (ANN) and Multivariate Adaptive Regression Spline (MARS) models in predicting the MSL. Tide gauge records from the Takoradi Harbour of Ghana were used in the study. Monthly maximum, minimum and mean tidal values were derived from the secondary data and used for both model formulation and model testing. A comparative analysis of both models showed that the ANN model performed better than the MARS model. A Root Mean Square Error (RMSE) of 0.0359 m was obtained for the ANN model, whereas 0.0555 m was obtained for the MARS model. Mean Absolute Percentage Error (MAPE) of 3.1414% was obtained for the ANN model and whereas the MARS model yielded 5.6349%. A Mean Absolute Error (MAE) for the ANN model was 0.0284 m as against 0.0446 m for the MARS model. Correlation coefficient values of 0.9720 and 0.8874 were obtained for the ANN model and the MARS model respectively. An optimum ANN structure was found to be ANN 2-11-1. Based on the outcome of this study, it is recommended that ANN model should be adopted for forecasting local mean sea level for the study area. Keywords: Mean Sea Level, Artificial Neural Network, Multivariate Adaptive Regression Spline" @default.
- W2885152346 created "2018-08-22" @default.
- W2885152346 creator A5026058628 @default.
- W2885152346 creator A5086543055 @default.
- W2885152346 date "2018-06-28" @default.
- W2885152346 modified "2023-10-14" @default.
- W2885152346 title "Performance Evaluation for Mean Sea Level Prediction using Multivariate Adaptive Regression Spline and Artificial Neural Network" @default.
- W2885152346 cites W1966566163 @default.
- W2885152346 cites W1969529895 @default.
- W2885152346 cites W1978030580 @default.
- W2885152346 cites W2002016471 @default.
- W2885152346 cites W2016210396 @default.
- W2885152346 cites W2039240409 @default.
- W2885152346 cites W2068781904 @default.
- W2885152346 cites W2072070605 @default.
- W2885152346 cites W2075823137 @default.
- W2885152346 cites W2090598548 @default.
- W2885152346 cites W2216444323 @default.
- W2885152346 cites W2472315344 @default.
- W2885152346 doi "https://doi.org/10.4314/gm.v18i1.1" @default.
- W2885152346 hasPublicationYear "2018" @default.
- W2885152346 type Work @default.
- W2885152346 sameAs 2885152346 @default.
- W2885152346 citedByCount "2" @default.
- W2885152346 countsByYear W28851523462021 @default.
- W2885152346 crossrefType "journal-article" @default.
- W2885152346 hasAuthorship W2885152346A5026058628 @default.
- W2885152346 hasAuthorship W2885152346A5086543055 @default.
- W2885152346 hasBestOaLocation W28851523461 @default.
- W2885152346 hasConcept C100260852 @default.
- W2885152346 hasConcept C100970517 @default.
- W2885152346 hasConcept C105795698 @default.
- W2885152346 hasConcept C113346285 @default.
- W2885152346 hasConcept C119857082 @default.
- W2885152346 hasConcept C121332964 @default.
- W2885152346 hasConcept C127313418 @default.
- W2885152346 hasConcept C1276947 @default.
- W2885152346 hasConcept C128990827 @default.
- W2885152346 hasConcept C13280743 @default.
- W2885152346 hasConcept C136856113 @default.
- W2885152346 hasConcept C139945424 @default.
- W2885152346 hasConcept C150217764 @default.
- W2885152346 hasConcept C152877465 @default.
- W2885152346 hasConcept C205649164 @default.
- W2885152346 hasConcept C2780092901 @default.
- W2885152346 hasConcept C33923547 @default.
- W2885152346 hasConcept C39432304 @default.
- W2885152346 hasConcept C41008148 @default.
- W2885152346 hasConcept C44882253 @default.
- W2885152346 hasConcept C50644808 @default.
- W2885152346 hasConcept C58754882 @default.
- W2885152346 hasConcept C64946054 @default.
- W2885152346 hasConcept C74501621 @default.
- W2885152346 hasConcept C8058405 @default.
- W2885152346 hasConcept C80989030 @default.
- W2885152346 hasConcept C83260615 @default.
- W2885152346 hasConceptScore W2885152346C100260852 @default.
- W2885152346 hasConceptScore W2885152346C100970517 @default.
- W2885152346 hasConceptScore W2885152346C105795698 @default.
- W2885152346 hasConceptScore W2885152346C113346285 @default.
- W2885152346 hasConceptScore W2885152346C119857082 @default.
- W2885152346 hasConceptScore W2885152346C121332964 @default.
- W2885152346 hasConceptScore W2885152346C127313418 @default.
- W2885152346 hasConceptScore W2885152346C1276947 @default.
- W2885152346 hasConceptScore W2885152346C128990827 @default.
- W2885152346 hasConceptScore W2885152346C13280743 @default.
- W2885152346 hasConceptScore W2885152346C136856113 @default.
- W2885152346 hasConceptScore W2885152346C139945424 @default.
- W2885152346 hasConceptScore W2885152346C150217764 @default.
- W2885152346 hasConceptScore W2885152346C152877465 @default.
- W2885152346 hasConceptScore W2885152346C205649164 @default.
- W2885152346 hasConceptScore W2885152346C2780092901 @default.
- W2885152346 hasConceptScore W2885152346C33923547 @default.
- W2885152346 hasConceptScore W2885152346C39432304 @default.
- W2885152346 hasConceptScore W2885152346C41008148 @default.
- W2885152346 hasConceptScore W2885152346C44882253 @default.
- W2885152346 hasConceptScore W2885152346C50644808 @default.
- W2885152346 hasConceptScore W2885152346C58754882 @default.
- W2885152346 hasConceptScore W2885152346C64946054 @default.
- W2885152346 hasConceptScore W2885152346C74501621 @default.
- W2885152346 hasConceptScore W2885152346C8058405 @default.
- W2885152346 hasConceptScore W2885152346C80989030 @default.
- W2885152346 hasConceptScore W2885152346C83260615 @default.
- W2885152346 hasIssue "1" @default.
- W2885152346 hasLocation W28851523461 @default.
- W2885152346 hasOpenAccess W2885152346 @default.
- W2885152346 hasPrimaryLocation W28851523461 @default.
- W2885152346 hasRelatedWork W2022689431 @default.
- W2885152346 hasRelatedWork W2041131687 @default.
- W2885152346 hasRelatedWork W2071056414 @default.
- W2885152346 hasRelatedWork W2111852294 @default.
- W2885152346 hasRelatedWork W2259980752 @default.
- W2885152346 hasRelatedWork W2520200211 @default.
- W2885152346 hasRelatedWork W2885152346 @default.
- W2885152346 hasRelatedWork W3010482618 @default.
- W2885152346 hasRelatedWork W805886139 @default.
- W2885152346 hasRelatedWork W83712527 @default.
- W2885152346 hasVolume "18" @default.