Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885154917> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2885154917 endingPage "891" @default.
- W2885154917 startingPage "883" @default.
- W2885154917 abstract "With the increasing scale of modern petrochemical industries, energy modeling plays a more and more important role in energy-saving. However, it becomes more and more difficult to build accurate energy models due to the complicated characteristics of high nonlinearity, high dimension and strong coupling of modeling data. In order to tackle this problem, a novel latent variable based efficient functional link learning machine is proposed in this paper. In the proposed method, there are three salient features: first, a nonlinear function expansion block is used to extend the space of energy modeling data to highly nonlinear space for effectively solving the high nonlinear problem of energy modeling data; second, principal components based latent variables are extracted from the expanded space for removing redundant information; finally, an extreme learning algorithm based on generalized inverse is utilized to train the proposed model for achieving fast learning speed. To validate the performance of the proposed model, a case study of developing an energy model for a Purified Terephthalic Acid production process is carried out. Simulation results show that the proposed model can achieve not only extreme learning speed, but also acceptable accuracy." @default.
- W2885154917 created "2018-08-22" @default.
- W2885154917 creator A5006536923 @default.
- W2885154917 creator A5045331954 @default.
- W2885154917 creator A5054385364 @default.
- W2885154917 creator A5070775744 @default.
- W2885154917 date "2018-11-01" @default.
- W2885154917 modified "2023-10-16" @default.
- W2885154917 title "Energy modeling using an effective latent variable based functional link learning machine" @default.
- W2885154917 cites W162320270 @default.
- W2885154917 cites W1980268917 @default.
- W2885154917 cites W1984152361 @default.
- W2885154917 cites W1988832001 @default.
- W2885154917 cites W1999194769 @default.
- W2885154917 cites W2001678350 @default.
- W2885154917 cites W2028581960 @default.
- W2885154917 cites W2037634800 @default.
- W2885154917 cites W2064733273 @default.
- W2885154917 cites W2079692514 @default.
- W2885154917 cites W2109349169 @default.
- W2885154917 cites W2111072639 @default.
- W2885154917 cites W2118899040 @default.
- W2885154917 cites W2336570659 @default.
- W2885154917 cites W2508440638 @default.
- W2885154917 cites W2563929255 @default.
- W2885154917 cites W2595952394 @default.
- W2885154917 cites W2605315194 @default.
- W2885154917 cites W2618709819 @default.
- W2885154917 cites W2620595718 @default.
- W2885154917 cites W2766067319 @default.
- W2885154917 cites W2776902150 @default.
- W2885154917 cites W2789459286 @default.
- W2885154917 cites W2793201667 @default.
- W2885154917 cites W2950779797 @default.
- W2885154917 doi "https://doi.org/10.1016/j.energy.2018.08.105" @default.
- W2885154917 hasPublicationYear "2018" @default.
- W2885154917 type Work @default.
- W2885154917 sameAs 2885154917 @default.
- W2885154917 citedByCount "13" @default.
- W2885154917 countsByYear W28851549172018 @default.
- W2885154917 countsByYear W28851549172019 @default.
- W2885154917 countsByYear W28851549172020 @default.
- W2885154917 countsByYear W28851549172021 @default.
- W2885154917 countsByYear W28851549172022 @default.
- W2885154917 countsByYear W28851549172023 @default.
- W2885154917 crossrefType "journal-article" @default.
- W2885154917 hasAuthorship W2885154917A5006536923 @default.
- W2885154917 hasAuthorship W2885154917A5045331954 @default.
- W2885154917 hasAuthorship W2885154917A5054385364 @default.
- W2885154917 hasAuthorship W2885154917A5070775744 @default.
- W2885154917 hasConcept C105795698 @default.
- W2885154917 hasConcept C119857082 @default.
- W2885154917 hasConcept C121332964 @default.
- W2885154917 hasConcept C154945302 @default.
- W2885154917 hasConcept C158622935 @default.
- W2885154917 hasConcept C186370098 @default.
- W2885154917 hasConcept C2780150128 @default.
- W2885154917 hasConcept C33923547 @default.
- W2885154917 hasConcept C41008148 @default.
- W2885154917 hasConcept C50644808 @default.
- W2885154917 hasConcept C51167844 @default.
- W2885154917 hasConcept C62520636 @default.
- W2885154917 hasConceptScore W2885154917C105795698 @default.
- W2885154917 hasConceptScore W2885154917C119857082 @default.
- W2885154917 hasConceptScore W2885154917C121332964 @default.
- W2885154917 hasConceptScore W2885154917C154945302 @default.
- W2885154917 hasConceptScore W2885154917C158622935 @default.
- W2885154917 hasConceptScore W2885154917C186370098 @default.
- W2885154917 hasConceptScore W2885154917C2780150128 @default.
- W2885154917 hasConceptScore W2885154917C33923547 @default.
- W2885154917 hasConceptScore W2885154917C41008148 @default.
- W2885154917 hasConceptScore W2885154917C50644808 @default.
- W2885154917 hasConceptScore W2885154917C51167844 @default.
- W2885154917 hasConceptScore W2885154917C62520636 @default.
- W2885154917 hasFunder F4320321001 @default.
- W2885154917 hasLocation W28851549171 @default.
- W2885154917 hasOpenAccess W2885154917 @default.
- W2885154917 hasPrimaryLocation W28851549171 @default.
- W2885154917 hasRelatedWork W1584764049 @default.
- W2885154917 hasRelatedWork W2002678693 @default.
- W2885154917 hasRelatedWork W2067443264 @default.
- W2885154917 hasRelatedWork W2556335056 @default.
- W2885154917 hasRelatedWork W2741186499 @default.
- W2885154917 hasRelatedWork W2804652951 @default.
- W2885154917 hasRelatedWork W2905251838 @default.
- W2885154917 hasRelatedWork W2969890106 @default.
- W2885154917 hasRelatedWork W31566076 @default.
- W2885154917 hasRelatedWork W4297902562 @default.
- W2885154917 hasVolume "162" @default.
- W2885154917 isParatext "false" @default.
- W2885154917 isRetracted "false" @default.
- W2885154917 magId "2885154917" @default.
- W2885154917 workType "article" @default.