Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885171427> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2885171427 endingPage "2238" @default.
- W2885171427 startingPage "2233" @default.
- W2885171427 abstract "The steel industry is committed to improving product quality and productivity with low production cost. To achieve these objectives, reducing product defects is of utmost importance. There is an increasing interest in developing a model to predict the occurrence of defects online. However, traditional statistical models such as multiple linear regression and Poisson model are not adequate enough to describe the observed defect count data due to the unique characteristics of non-negative integers, overdispersion, high skewed distribution, and excess zeros in the data. This study develops an online quality monitoring system based on the zero-inflated regression modeling. Zero-inflated models are two-component mixture models that combine a count component and a point mass at zero. Intuitively, a mass of zeros observed in defect data can be attributed to two states: a safe (perfect) state, where no defect occurs, and a nonsafe (imperfect) state, in which defects are possible but not inevitable. Zero-inflated models are suitable for modeling discrete and non-negative integers data and can handle both over-dispersion and excess zeros. The effectiveness of the zero-inflated models was verified through their application to the real defect data of a steelmaking plant. The application results demonstrated that the prediction accuracy of the zero-inflated models is superior to the PLS, Poisson, and negative binomial models." @default.
- W2885171427 created "2018-08-22" @default.
- W2885171427 creator A5015708262 @default.
- W2885171427 creator A5027269981 @default.
- W2885171427 creator A5033384971 @default.
- W2885171427 creator A5033929483 @default.
- W2885171427 creator A5034630360 @default.
- W2885171427 date "2018-01-01" @default.
- W2885171427 modified "2023-09-30" @default.
- W2885171427 title "Defect Data Modeling and Analysis for Improving Product Quality and Productivity in Steel Industry" @default.
- W2885171427 cites W1987627406 @default.
- W2885171427 cites W1990384678 @default.
- W2885171427 cites W2000651380 @default.
- W2885171427 cites W2032058792 @default.
- W2885171427 cites W2092133600 @default.
- W2885171427 doi "https://doi.org/10.1016/b978-0-444-64241-7.50367-0" @default.
- W2885171427 hasPublicationYear "2018" @default.
- W2885171427 type Work @default.
- W2885171427 sameAs 2885171427 @default.
- W2885171427 citedByCount "4" @default.
- W2885171427 countsByYear W28851714272019 @default.
- W2885171427 countsByYear W28851714272020 @default.
- W2885171427 countsByYear W28851714272023 @default.
- W2885171427 crossrefType "book-chapter" @default.
- W2885171427 hasAuthorship W2885171427A5015708262 @default.
- W2885171427 hasAuthorship W2885171427A5027269981 @default.
- W2885171427 hasAuthorship W2885171427A5033384971 @default.
- W2885171427 hasAuthorship W2885171427A5033929483 @default.
- W2885171427 hasAuthorship W2885171427A5034630360 @default.
- W2885171427 hasConcept C100906024 @default.
- W2885171427 hasConcept C105795698 @default.
- W2885171427 hasConcept C111472728 @default.
- W2885171427 hasConcept C117236510 @default.
- W2885171427 hasConcept C138885662 @default.
- W2885171427 hasConcept C144024400 @default.
- W2885171427 hasConcept C149782125 @default.
- W2885171427 hasConcept C149923435 @default.
- W2885171427 hasConcept C199335787 @default.
- W2885171427 hasConcept C2524010 @default.
- W2885171427 hasConcept C2779530757 @default.
- W2885171427 hasConcept C2908647359 @default.
- W2885171427 hasConcept C33643355 @default.
- W2885171427 hasConcept C33923547 @default.
- W2885171427 hasConcept C41008148 @default.
- W2885171427 hasConcept C73269764 @default.
- W2885171427 hasConcept C88721176 @default.
- W2885171427 hasConcept C90673727 @default.
- W2885171427 hasConceptScore W2885171427C100906024 @default.
- W2885171427 hasConceptScore W2885171427C105795698 @default.
- W2885171427 hasConceptScore W2885171427C111472728 @default.
- W2885171427 hasConceptScore W2885171427C117236510 @default.
- W2885171427 hasConceptScore W2885171427C138885662 @default.
- W2885171427 hasConceptScore W2885171427C144024400 @default.
- W2885171427 hasConceptScore W2885171427C149782125 @default.
- W2885171427 hasConceptScore W2885171427C149923435 @default.
- W2885171427 hasConceptScore W2885171427C199335787 @default.
- W2885171427 hasConceptScore W2885171427C2524010 @default.
- W2885171427 hasConceptScore W2885171427C2779530757 @default.
- W2885171427 hasConceptScore W2885171427C2908647359 @default.
- W2885171427 hasConceptScore W2885171427C33643355 @default.
- W2885171427 hasConceptScore W2885171427C33923547 @default.
- W2885171427 hasConceptScore W2885171427C41008148 @default.
- W2885171427 hasConceptScore W2885171427C73269764 @default.
- W2885171427 hasConceptScore W2885171427C88721176 @default.
- W2885171427 hasConceptScore W2885171427C90673727 @default.
- W2885171427 hasLocation W28851714271 @default.
- W2885171427 hasOpenAccess W2885171427 @default.
- W2885171427 hasPrimaryLocation W28851714271 @default.
- W2885171427 hasRelatedWork W2107313875 @default.
- W2885171427 hasRelatedWork W2113084073 @default.
- W2885171427 hasRelatedWork W2117309211 @default.
- W2885171427 hasRelatedWork W2159796125 @default.
- W2885171427 hasRelatedWork W2971731486 @default.
- W2885171427 hasRelatedWork W3127154874 @default.
- W2885171427 hasRelatedWork W3135303892 @default.
- W2885171427 hasRelatedWork W3186588872 @default.
- W2885171427 hasRelatedWork W3210390693 @default.
- W2885171427 hasRelatedWork W375692831 @default.
- W2885171427 isParatext "false" @default.
- W2885171427 isRetracted "false" @default.
- W2885171427 magId "2885171427" @default.
- W2885171427 workType "book-chapter" @default.