Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885178111> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2885178111 endingPage "2400" @default.
- W2885178111 startingPage "2395" @default.
- W2885178111 abstract "Traffic flow prediction is one of the most popular topics in the field of the intelligent transportation system due to its importance. Powered by advanced machine learning techniques, especially the deep learning method, prediction accuracy noticeably increases in recent years. However, most existing methods applied a data-driven paradigm and tend to ignore the outliers, which result in poor performance while handling burst phenomena in the traffic system. To overcome this problem, the prediction model needs to recognize different patterns and handle them in different ways. In this paper, we propose a new prediction model (called pattern sensitive network) that can handle different traffic patterns automatically. By using adversarial training, our model can make more accurate predictions in unusual states without compromising its performance in usual states. Experiments demonstrate that our method can work well in both usual traffic states and unusual traffic states." @default.
- W2885178111 created "2018-08-22" @default.
- W2885178111 creator A5027475930 @default.
- W2885178111 creator A5033750817 @default.
- W2885178111 creator A5057269411 @default.
- W2885178111 creator A5083438052 @default.
- W2885178111 date "2019-06-01" @default.
- W2885178111 modified "2023-10-09" @default.
- W2885178111 title "Pattern Sensitive Prediction of Traffic Flow Based on Generative Adversarial Framework" @default.
- W2885178111 cites W1689711448 @default.
- W2885178111 cites W1932034580 @default.
- W2885178111 cites W1965555277 @default.
- W2885178111 cites W1972309850 @default.
- W2885178111 cites W1982553902 @default.
- W2885178111 cites W2004353783 @default.
- W2885178111 cites W2040297119 @default.
- W2885178111 cites W2049500727 @default.
- W2885178111 cites W2069929199 @default.
- W2885178111 cites W2083238230 @default.
- W2885178111 cites W2097762637 @default.
- W2885178111 cites W2108196201 @default.
- W2885178111 cites W2133747588 @default.
- W2885178111 cites W2165991108 @default.
- W2885178111 cites W2177262641 @default.
- W2885178111 cites W2460404912 @default.
- W2885178111 cites W2498017881 @default.
- W2885178111 cites W2533328922 @default.
- W2885178111 cites W2572939427 @default.
- W2885178111 cites W2575664305 @default.
- W2885178111 cites W2624190409 @default.
- W2885178111 cites W2724431948 @default.
- W2885178111 cites W2746243444 @default.
- W2885178111 cites W2754582354 @default.
- W2885178111 cites W2755577605 @default.
- W2885178111 cites W2769653144 @default.
- W2885178111 cites W2783478760 @default.
- W2885178111 cites W2919115771 @default.
- W2885178111 cites W4234761883 @default.
- W2885178111 doi "https://doi.org/10.1109/tits.2018.2857224" @default.
- W2885178111 hasPublicationYear "2019" @default.
- W2885178111 type Work @default.
- W2885178111 sameAs 2885178111 @default.
- W2885178111 citedByCount "66" @default.
- W2885178111 countsByYear W28851781112018 @default.
- W2885178111 countsByYear W28851781112019 @default.
- W2885178111 countsByYear W28851781112020 @default.
- W2885178111 countsByYear W28851781112021 @default.
- W2885178111 countsByYear W28851781112022 @default.
- W2885178111 countsByYear W28851781112023 @default.
- W2885178111 crossrefType "journal-article" @default.
- W2885178111 hasAuthorship W2885178111A5027475930 @default.
- W2885178111 hasAuthorship W2885178111A5033750817 @default.
- W2885178111 hasAuthorship W2885178111A5057269411 @default.
- W2885178111 hasAuthorship W2885178111A5083438052 @default.
- W2885178111 hasConcept C154945302 @default.
- W2885178111 hasConcept C207512268 @default.
- W2885178111 hasConcept C2524010 @default.
- W2885178111 hasConcept C33923547 @default.
- W2885178111 hasConcept C37736160 @default.
- W2885178111 hasConcept C38349280 @default.
- W2885178111 hasConcept C38652104 @default.
- W2885178111 hasConcept C39890363 @default.
- W2885178111 hasConcept C41008148 @default.
- W2885178111 hasConceptScore W2885178111C154945302 @default.
- W2885178111 hasConceptScore W2885178111C207512268 @default.
- W2885178111 hasConceptScore W2885178111C2524010 @default.
- W2885178111 hasConceptScore W2885178111C33923547 @default.
- W2885178111 hasConceptScore W2885178111C37736160 @default.
- W2885178111 hasConceptScore W2885178111C38349280 @default.
- W2885178111 hasConceptScore W2885178111C38652104 @default.
- W2885178111 hasConceptScore W2885178111C39890363 @default.
- W2885178111 hasConceptScore W2885178111C41008148 @default.
- W2885178111 hasFunder F4320321001 @default.
- W2885178111 hasIssue "6" @default.
- W2885178111 hasLocation W28851781111 @default.
- W2885178111 hasOpenAccess W2885178111 @default.
- W2885178111 hasPrimaryLocation W28851781111 @default.
- W2885178111 hasRelatedWork W2901368259 @default.
- W2885178111 hasRelatedWork W2998996837 @default.
- W2885178111 hasRelatedWork W3017161950 @default.
- W2885178111 hasRelatedWork W3024390022 @default.
- W2885178111 hasRelatedWork W3156291593 @default.
- W2885178111 hasRelatedWork W3164279787 @default.
- W2885178111 hasRelatedWork W4280544492 @default.
- W2885178111 hasRelatedWork W4311460979 @default.
- W2885178111 hasRelatedWork W4313479464 @default.
- W2885178111 hasRelatedWork W4316035501 @default.
- W2885178111 hasVolume "20" @default.
- W2885178111 isParatext "false" @default.
- W2885178111 isRetracted "false" @default.
- W2885178111 magId "2885178111" @default.
- W2885178111 workType "article" @default.