Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885190940> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2885190940 abstract "Training artificial neural networks (ANNs) is a common hard optimization problem. The process of neural nets training is generally defined on synaptic weights and thresholds of artificial neurons with the aim to find optimal or near-optimal values. Artificial bee colony (ABC) optimization has been successfully applied to several optimization problems, including the optimization of weights and biases of ANNs. This paper addresses the problem of feed-forward ANNs training by using a novel ABC variant named cooperative learning artificial bee colony algorithm (CLABC), which we have developed in our previous work. The performance of the CLABC-trained feed-forward ANN is validated on different classification problems, namely the XOR problem, the 3-bit parity, 4-bit encoder-decoder and Iris benchmark problems. The results are compared to other advanced optimization methods." @default.
- W2885190940 created "2018-08-22" @default.
- W2885190940 creator A5003252368 @default.
- W2885190940 creator A5066448705 @default.
- W2885190940 date "2018-08-10" @default.
- W2885190940 modified "2023-10-01" @default.
- W2885190940 title "A Novel Artificial Bee Colony Learning System for Data Classification" @default.
- W2885190940 cites W145972087 @default.
- W2885190940 cites W1490180010 @default.
- W2885190940 cites W1966295103 @default.
- W2885190940 cites W1977042441 @default.
- W2885190940 cites W1988684310 @default.
- W2885190940 cites W2009525342 @default.
- W2885190940 cites W2010259265 @default.
- W2885190940 cites W2056565831 @default.
- W2885190940 cites W2110576630 @default.
- W2885190940 cites W2143560894 @default.
- W2885190940 cites W2216418492 @default.
- W2885190940 cites W2341518153 @default.
- W2885190940 cites W2907618501 @default.
- W2885190940 doi "https://doi.org/10.1007/978-3-319-98352-3_34" @default.
- W2885190940 hasPublicationYear "2018" @default.
- W2885190940 type Work @default.
- W2885190940 sameAs 2885190940 @default.
- W2885190940 citedByCount "2" @default.
- W2885190940 countsByYear W28851909402020 @default.
- W2885190940 crossrefType "book-chapter" @default.
- W2885190940 hasAuthorship W2885190940A5003252368 @default.
- W2885190940 hasAuthorship W2885190940A5066448705 @default.
- W2885190940 hasConcept C119857082 @default.
- W2885190940 hasConcept C13280743 @default.
- W2885190940 hasConcept C154945302 @default.
- W2885190940 hasConcept C185798385 @default.
- W2885190940 hasConcept C205649164 @default.
- W2885190940 hasConcept C41008148 @default.
- W2885190940 hasConcept C50644808 @default.
- W2885190940 hasConcept C97133563 @default.
- W2885190940 hasConceptScore W2885190940C119857082 @default.
- W2885190940 hasConceptScore W2885190940C13280743 @default.
- W2885190940 hasConceptScore W2885190940C154945302 @default.
- W2885190940 hasConceptScore W2885190940C185798385 @default.
- W2885190940 hasConceptScore W2885190940C205649164 @default.
- W2885190940 hasConceptScore W2885190940C41008148 @default.
- W2885190940 hasConceptScore W2885190940C50644808 @default.
- W2885190940 hasConceptScore W2885190940C97133563 @default.
- W2885190940 hasLocation W28851909401 @default.
- W2885190940 hasOpenAccess W2885190940 @default.
- W2885190940 hasPrimaryLocation W28851909401 @default.
- W2885190940 hasRelatedWork W2089804596 @default.
- W2885190940 hasRelatedWork W2602669231 @default.
- W2885190940 hasRelatedWork W2765476116 @default.
- W2885190940 hasRelatedWork W2790244305 @default.
- W2885190940 hasRelatedWork W2946567716 @default.
- W2885190940 hasRelatedWork W3186513815 @default.
- W2885190940 hasRelatedWork W3193641238 @default.
- W2885190940 hasRelatedWork W4200446208 @default.
- W2885190940 hasRelatedWork W4223943233 @default.
- W2885190940 hasRelatedWork W4281986673 @default.
- W2885190940 isParatext "false" @default.
- W2885190940 isRetracted "false" @default.
- W2885190940 magId "2885190940" @default.
- W2885190940 workType "book-chapter" @default.