Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885241307> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2885241307 endingPage "20" @default.
- W2885241307 startingPage "16" @default.
- W2885241307 abstract "Abstract Objectives Postmortem computed tomography (PMCT) usually includes the generation of great amounts of imaging data, and is often reviewed by forensic pathologists. To allow a more resource-efficient diagnosis, deep neural networks may act as a pre-scanning tool in postmortem radiology. In this study, a deep neural network to classify cases depending on the presence skull fractures on curved maximum intensity projections (CMIP). Methods Calvarial CMIPs of each 75 cases with and without documented skull fractures were retrospectively generated from our database. Then, half of the data were randomly assigned to either training or validation. In supervised training, fractures were manually marked. During validation, each image received a gradual score between 0 and 1 predicting the likelihood of showing one or more fractures. Results With a total number of 100 networks trained, the average area under the Receiver Operating Characteristic curve (AUC) was 0.895. The best performing network had an AUC of 0.965. At a classification threshold of 0.79, the network classified fracture cases correctly with a sensitivity of 91.4% and a specificity of 87.5%. Conclusion Classification based on the existence of skull fractures on CMIPs with deep learning is feasible. For the purpose of pre-scanning PMCT data, a classification threshold of 0.75 with a sensitivity of 100% can be applied. A higher number of images of validated skull fractures available will increase the performance of the network. In the future, Deep learning might enable a more resource-efficient assessment in postmortem radiology." @default.
- W2885241307 created "2018-08-22" @default.
- W2885241307 creator A5012271078 @default.
- W2885241307 creator A5013718145 @default.
- W2885241307 creator A5068161213 @default.
- W2885241307 date "2018-09-01" @default.
- W2885241307 modified "2023-09-26" @default.
- W2885241307 title "Classification based on the presence of skull fractures on curved maximum intensity skull projections by means of deep learning" @default.
- W2885241307 cites W1919819425 @default.
- W2885241307 cites W1963497398 @default.
- W2885241307 cites W1968951260 @default.
- W2885241307 cites W1973471886 @default.
- W2885241307 cites W1986618677 @default.
- W2885241307 cites W1994649356 @default.
- W2885241307 cites W2007404812 @default.
- W2885241307 cites W2009992499 @default.
- W2885241307 cites W2039110588 @default.
- W2885241307 cites W2046015559 @default.
- W2885241307 cites W2069816479 @default.
- W2885241307 cites W2083131254 @default.
- W2885241307 cites W2121541982 @default.
- W2885241307 cites W2256917630 @default.
- W2885241307 cites W2530279937 @default.
- W2885241307 cites W2588570836 @default.
- W2885241307 cites W2592929672 @default.
- W2885241307 cites W2750508030 @default.
- W2885241307 cites W2795774310 @default.
- W2885241307 cites W2919115771 @default.
- W2885241307 cites W4241695521 @default.
- W2885241307 doi "https://doi.org/10.1016/j.jofri.2018.08.001" @default.
- W2885241307 hasPublicationYear "2018" @default.
- W2885241307 type Work @default.
- W2885241307 sameAs 2885241307 @default.
- W2885241307 citedByCount "7" @default.
- W2885241307 countsByYear W28852413072018 @default.
- W2885241307 countsByYear W28852413072020 @default.
- W2885241307 countsByYear W28852413072022 @default.
- W2885241307 crossrefType "journal-article" @default.
- W2885241307 hasAuthorship W2885241307A5012271078 @default.
- W2885241307 hasAuthorship W2885241307A5013718145 @default.
- W2885241307 hasAuthorship W2885241307A5068161213 @default.
- W2885241307 hasConcept C105702510 @default.
- W2885241307 hasConcept C120665830 @default.
- W2885241307 hasConcept C121332964 @default.
- W2885241307 hasConcept C127313418 @default.
- W2885241307 hasConcept C154945302 @default.
- W2885241307 hasConcept C2776905153 @default.
- W2885241307 hasConcept C2779300802 @default.
- W2885241307 hasConcept C41008148 @default.
- W2885241307 hasConcept C71924100 @default.
- W2885241307 hasConcept C93038891 @default.
- W2885241307 hasConceptScore W2885241307C105702510 @default.
- W2885241307 hasConceptScore W2885241307C120665830 @default.
- W2885241307 hasConceptScore W2885241307C121332964 @default.
- W2885241307 hasConceptScore W2885241307C127313418 @default.
- W2885241307 hasConceptScore W2885241307C154945302 @default.
- W2885241307 hasConceptScore W2885241307C2776905153 @default.
- W2885241307 hasConceptScore W2885241307C2779300802 @default.
- W2885241307 hasConceptScore W2885241307C41008148 @default.
- W2885241307 hasConceptScore W2885241307C71924100 @default.
- W2885241307 hasConceptScore W2885241307C93038891 @default.
- W2885241307 hasLocation W28852413071 @default.
- W2885241307 hasOpenAccess W2885241307 @default.
- W2885241307 hasPrimaryLocation W28852413071 @default.
- W2885241307 hasRelatedWork W2019178780 @default.
- W2885241307 hasRelatedWork W2032257663 @default.
- W2885241307 hasRelatedWork W2045992305 @default.
- W2885241307 hasRelatedWork W2055194029 @default.
- W2885241307 hasRelatedWork W2364837552 @default.
- W2885241307 hasRelatedWork W2395508177 @default.
- W2885241307 hasRelatedWork W2401294001 @default.
- W2885241307 hasRelatedWork W2426974840 @default.
- W2885241307 hasRelatedWork W91146296 @default.
- W2885241307 hasRelatedWork W2206012389 @default.
- W2885241307 hasVolume "14" @default.
- W2885241307 isParatext "false" @default.
- W2885241307 isRetracted "false" @default.
- W2885241307 magId "2885241307" @default.
- W2885241307 workType "article" @default.