Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885246677> ?p ?o ?g. }
- W2885246677 endingPage "144" @default.
- W2885246677 startingPage "133" @default.
- W2885246677 abstract "Sand deposits cover extensive areas both in the northern and southern hemispheres and the timing and chronology and processes that govern their dynamics are of major interest. Luminescence-based dating methods, are used to date episodic aeolian events but are restricted to late Quaternary deposits, and only reveal the last cycle of sediment burial and not the time of sand existence in the landscape. Burial ages modelled from cosmogenic nuclides reach further back in time, but are usually inferred as minimal deposition ages. It is apparent that standard dating methods, when applied individually, have limited applicability for determining both the age and the processes that form aeolian deposits. This study presents an approach that integrates luminescence dating and cosmogenic burial dating into a stochastic model developed to reproduce sand formation and migration. The model is based on a process in which quartz grains are vertically displaced through a sand column simulating dune migration across the landscape. A range of vertical displacement rates is compiled from published luminescence ages of dated dune fields of varied settings throughout the world. Using these vertical movement rates, sand is recycled up and down a depth profile coupled with a step-wise calculations of cosmogenic nuclides accumulation and decay, alongside OSL signal accumulation. When the modelled sand grains are buried, their luminescence signal grows while 26Al and 10Be decay or accumulate as a function of their respective radioactive decay and production rate, which is governed by cosmic rays attenuation. When sand is exposed at the surface, the luminescence signal is reset and cosmogenic nuclide production is maximized. Each simulation is terminated when the modelled concentrations of 26Al and 10Be reach measured concentrations in actual sand samples. Luminescence data therefore provide the time since last exposure at the surface (i.e. the last depositional cycle), whereas the cosmogenic nuclides provide a long-term estimate of sand residence in the landscape reflecting also weathering and erosion of the source bedrock. The southern Kalahari dune field at Mamatwan, South Africa, is used as a case study to test the presented approach. Model results show that optically stimulated luminescence ages which range between 1 and 10 Ka, only reflect the last cycle of sand migration, while cosmogenic nuclides minimal burial ages are greater than 1 Ma. Furthermore, the simulation results indicate two peaks at 1.5–2.2 Ma and at 4.2–5.2 Ma, suggesting two main phases of sand introduction to the Kalahari during the Pliocene and Pleistocene. Finally, the modelled ages are concurrent with regional environmental and climatic events. The model presented in this study provides a powerful tool for estimating the emergence of sand in a given landscape, and also for understanding the dynamic evolution of any dune field and the mechanisms behind dune migration." @default.
- W2885246677 created "2018-08-22" @default.
- W2885246677 creator A5015067722 @default.
- W2885246677 creator A5040930762 @default.
- W2885246677 creator A5059267263 @default.
- W2885246677 date "2018-10-01" @default.
- W2885246677 modified "2023-10-06" @default.
- W2885246677 title "Coupling cosmogenic nuclides and luminescence dating into a unified accumulation model of aeolian landforms age and dynamics: The case study of the Kalahari Erg" @default.
- W2885246677 cites W1496478109 @default.
- W2885246677 cites W1545529233 @default.
- W2885246677 cites W1660481570 @default.
- W2885246677 cites W1965863086 @default.
- W2885246677 cites W1966330651 @default.
- W2885246677 cites W1968702921 @default.
- W2885246677 cites W1970870226 @default.
- W2885246677 cites W1974370696 @default.
- W2885246677 cites W1974383824 @default.
- W2885246677 cites W1974848836 @default.
- W2885246677 cites W1975350041 @default.
- W2885246677 cites W1975605074 @default.
- W2885246677 cites W1976422520 @default.
- W2885246677 cites W1979164581 @default.
- W2885246677 cites W1981782178 @default.
- W2885246677 cites W1993966307 @default.
- W2885246677 cites W1995786194 @default.
- W2885246677 cites W2003080464 @default.
- W2885246677 cites W2003522741 @default.
- W2885246677 cites W2005035365 @default.
- W2885246677 cites W2009494788 @default.
- W2885246677 cites W2010478315 @default.
- W2885246677 cites W2014717450 @default.
- W2885246677 cites W2015664168 @default.
- W2885246677 cites W2020784398 @default.
- W2885246677 cites W2022570574 @default.
- W2885246677 cites W2024804192 @default.
- W2885246677 cites W2026179781 @default.
- W2885246677 cites W2026620167 @default.
- W2885246677 cites W2027489828 @default.
- W2885246677 cites W2030175934 @default.
- W2885246677 cites W2032657829 @default.
- W2885246677 cites W2033664841 @default.
- W2885246677 cites W2034131861 @default.
- W2885246677 cites W2036773194 @default.
- W2885246677 cites W2038265449 @default.
- W2885246677 cites W2040273093 @default.
- W2885246677 cites W2043333517 @default.
- W2885246677 cites W2044216872 @default.
- W2885246677 cites W2046900012 @default.
- W2885246677 cites W2048613064 @default.
- W2885246677 cites W2065375885 @default.
- W2885246677 cites W2065474147 @default.
- W2885246677 cites W2070139607 @default.
- W2885246677 cites W2072472537 @default.
- W2885246677 cites W2072849167 @default.
- W2885246677 cites W2073485412 @default.
- W2885246677 cites W2076711130 @default.
- W2885246677 cites W2079896178 @default.
- W2885246677 cites W2088247150 @default.
- W2885246677 cites W2089783606 @default.
- W2885246677 cites W2090165060 @default.
- W2885246677 cites W2095019016 @default.
- W2885246677 cites W2111996152 @default.
- W2885246677 cites W2119625413 @default.
- W2885246677 cites W2121452287 @default.
- W2885246677 cites W2121801044 @default.
- W2885246677 cites W2140061839 @default.
- W2885246677 cites W2144898367 @default.
- W2885246677 cites W2151299354 @default.
- W2885246677 cites W2155128987 @default.
- W2885246677 cites W2159600762 @default.
- W2885246677 cites W2175637255 @default.
- W2885246677 cites W2196019541 @default.
- W2885246677 cites W2295844419 @default.
- W2885246677 cites W2334705631 @default.
- W2885246677 cites W2520389983 @default.
- W2885246677 cites W2734769268 @default.
- W2885246677 cites W2768995308 @default.
- W2885246677 cites W359350433 @default.
- W2885246677 cites W4232117125 @default.
- W2885246677 doi "https://doi.org/10.1016/j.quageo.2018.08.002" @default.
- W2885246677 hasPublicationYear "2018" @default.
- W2885246677 type Work @default.
- W2885246677 sameAs 2885246677 @default.
- W2885246677 citedByCount "12" @default.
- W2885246677 countsByYear W28852466772020 @default.
- W2885246677 countsByYear W28852466772021 @default.
- W2885246677 countsByYear W28852466772022 @default.
- W2885246677 countsByYear W28852466772023 @default.
- W2885246677 crossrefType "journal-article" @default.
- W2885246677 hasAuthorship W2885246677A5015067722 @default.
- W2885246677 hasAuthorship W2885246677A5040930762 @default.
- W2885246677 hasAuthorship W2885246677A5059267263 @default.
- W2885246677 hasConcept C100834320 @default.
- W2885246677 hasConcept C101140149 @default.
- W2885246677 hasConcept C108497213 @default.
- W2885246677 hasConcept C110307207 @default.
- W2885246677 hasConcept C111309251 @default.
- W2885246677 hasConcept C114793014 @default.