Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885306178> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2885306178 abstract "Capturing the structural behaviour through solving the formulations of the physical problem, is the constant interest of engineer and scientist researches working on civil construction field. Generally the equations governing the problem, for instance the elasticity problem, are partial differential equations (PDEs) and since exact solutions are available just for a restricted range of application, engineers and scientists have been started to improve numerical procedures. The main idea of numerical simulation is to transform a complex practical problem into a simple discrete form of mathematical formulation representing the problem of concern. The method used for numerical analysis of structures during the last 30 years is mainly the Finite Element Method (FEM) [1]. Then the Boundary Element Method (BEM) [2] was an alternative tool for numerical analysis, but in late Meshless or Meshfree (MFree) method has been developed with a great success [3]. Basically FEM needs a discretization over the entire domain through finite element mesh. Modification of the discretized model to improve the accuracy of the solution may be cumbersome. Although FEM evaluates the field function accurately, it is not proper to determine its derivatives. BEM overcomes these latter drawbacks since the discretization is only over the boundary of the body, thus to remodel will be very easy. Moreover the BEM allows evaluation of the solution and its derivatives at any point of the domain. The definition of Meshfree method (GR. Liu 2002,[3]) is: Meshfree method is a method used to establish system algebraic equations for the whole problem domain without the use of a predefined mesh for the domain discretization. In this paper, since the challenge is to avoid the mesh, it will be introduced the Line Element-less Method (LEM), for torsion solution applied in a beam of isotropic material and arbitrary cross section. LEM may be considered a truly no-mesh method because it does not need any discretization. All integrals are simple line integral even those used for evaluating the properties of cross-section as area, moment of inertia [4] Numerical results, which show the elegance and efficiency of the method will be reported contrasted with results of exact solution if available or approximate found in literature. Further the extension of this method to capture the structural response of plates under uniformly distributed edge moments [5] and transverse load, will be presented. Also for this latter case, several numerical examples will assess the accuracy of the proposed approach comparing the obtained results with other classical methods." @default.
- W2885306178 created "2018-08-22" @default.
- W2885306178 creator A5072717094 @default.
- W2885306178 date "2018-03-30" @default.
- W2885306178 modified "2023-09-23" @default.
- W2885306178 title "KEYNOTE: Line Element-less Method (LEM) for beams in torsion and Plates in bending" @default.
- W2885306178 hasPublicationYear "2018" @default.
- W2885306178 type Work @default.
- W2885306178 sameAs 2885306178 @default.
- W2885306178 citedByCount "0" @default.
- W2885306178 crossrefType "journal-article" @default.
- W2885306178 hasAuthorship W2885306178A5072717094 @default.
- W2885306178 hasConcept C127413603 @default.
- W2885306178 hasConcept C134306372 @default.
- W2885306178 hasConcept C135628077 @default.
- W2885306178 hasConcept C162835735 @default.
- W2885306178 hasConcept C182310444 @default.
- W2885306178 hasConcept C28826006 @default.
- W2885306178 hasConcept C33923547 @default.
- W2885306178 hasConcept C41008148 @default.
- W2885306178 hasConcept C48395688 @default.
- W2885306178 hasConcept C48753275 @default.
- W2885306178 hasConcept C52890695 @default.
- W2885306178 hasConcept C63632240 @default.
- W2885306178 hasConcept C66938386 @default.
- W2885306178 hasConcept C73000952 @default.
- W2885306178 hasConcept C93779851 @default.
- W2885306178 hasConceptScore W2885306178C127413603 @default.
- W2885306178 hasConceptScore W2885306178C134306372 @default.
- W2885306178 hasConceptScore W2885306178C135628077 @default.
- W2885306178 hasConceptScore W2885306178C162835735 @default.
- W2885306178 hasConceptScore W2885306178C182310444 @default.
- W2885306178 hasConceptScore W2885306178C28826006 @default.
- W2885306178 hasConceptScore W2885306178C33923547 @default.
- W2885306178 hasConceptScore W2885306178C41008148 @default.
- W2885306178 hasConceptScore W2885306178C48395688 @default.
- W2885306178 hasConceptScore W2885306178C48753275 @default.
- W2885306178 hasConceptScore W2885306178C52890695 @default.
- W2885306178 hasConceptScore W2885306178C63632240 @default.
- W2885306178 hasConceptScore W2885306178C66938386 @default.
- W2885306178 hasConceptScore W2885306178C73000952 @default.
- W2885306178 hasConceptScore W2885306178C93779851 @default.
- W2885306178 hasOpenAccess W2885306178 @default.
- W2885306178 hasRelatedWork W1479835491 @default.
- W2885306178 hasRelatedWork W2164808630 @default.
- W2885306178 hasRelatedWork W2170611593 @default.
- W2885306178 hasRelatedWork W2215277526 @default.
- W2885306178 hasRelatedWork W2238315148 @default.
- W2885306178 hasRelatedWork W2239655830 @default.
- W2885306178 hasRelatedWork W2276179934 @default.
- W2885306178 hasRelatedWork W2336188543 @default.
- W2885306178 hasRelatedWork W2551957842 @default.
- W2885306178 hasRelatedWork W2587125754 @default.
- W2885306178 hasRelatedWork W2760927857 @default.
- W2885306178 hasRelatedWork W2768266726 @default.
- W2885306178 hasRelatedWork W2770655233 @default.
- W2885306178 hasRelatedWork W2774409339 @default.
- W2885306178 hasRelatedWork W3035921138 @default.
- W2885306178 hasRelatedWork W3150390870 @default.
- W2885306178 hasRelatedWork W3168129016 @default.
- W2885306178 hasRelatedWork W3174659104 @default.
- W2885306178 hasRelatedWork W42613386 @default.
- W2885306178 hasRelatedWork W628305082 @default.
- W2885306178 isParatext "false" @default.
- W2885306178 isRetracted "false" @default.
- W2885306178 magId "2885306178" @default.
- W2885306178 workType "article" @default.