Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885309277> ?p ?o ?g. }
- W2885309277 endingPage "162" @default.
- W2885309277 startingPage "143" @default.
- W2885309277 abstract "Understanding proteins, their structures, functions, mutual interactions, activity in cellular reactions, interactions with drugs, and expression in body cells is a key to efficient medical diagnosis, drug production, and treatment of patients. Machine learning and data exploration methods supported by many-valued logics allow to grasp the imprecision and uncertainties that naturally occur in proteins and other biomolecules. Many-valued logics, like Łukasiewicz logic or fuzzy logic, are non-classical logics that do not restrict the number of truth values to only two values of true or false, but they allow for a larger set of truth degrees. In this paper, we briefly review the use of many-valued logics, especially the fuzzy logic, in bioinformatics. Then, we focus on protein bioinformatics, and present selected applications of many-valued logics in the analysis of complex protein structures, including; (1) potential-based protein similarity searching, (2) matching proteins on the basis of secondary structures, (3) 3D protein structure alignment, (4) prediction of intrinsically disordered proteins, and (5) fuzzy querying in large collections of Big macromolecular Data. Results of presented studies show that the utilization of many-valued logics can enrich the investigations of protein molecules, in which uncertainty and imprecision are prevalent problems. The paper discusses all observed benefits brought by the application of many-valued logics in investigations related to selected protein analyzes carried out by the author." @default.
- W2885309277 created "2018-08-22" @default.
- W2885309277 creator A5004555174 @default.
- W2885309277 date "2019-03-01" @default.
- W2885309277 modified "2023-09-29" @default.
- W2885309277 title "Uncertainty, imprecision, and many-valued logics in protein bioinformatics" @default.
- W2885309277 cites W158305552 @default.
- W2885309277 cites W1700031991 @default.
- W2885309277 cites W171521666 @default.
- W2885309277 cites W1893505266 @default.
- W2885309277 cites W1980080444 @default.
- W2885309277 cites W1986399650 @default.
- W2885309277 cites W1998987571 @default.
- W2885309277 cites W2014776147 @default.
- W2885309277 cites W2020206842 @default.
- W2885309277 cites W2023311279 @default.
- W2885309277 cites W2023971898 @default.
- W2885309277 cites W2024270582 @default.
- W2885309277 cites W2025383901 @default.
- W2885309277 cites W2025761388 @default.
- W2885309277 cites W2027838365 @default.
- W2885309277 cites W2037963718 @default.
- W2885309277 cites W2045735774 @default.
- W2885309277 cites W2055193239 @default.
- W2885309277 cites W2056841067 @default.
- W2885309277 cites W2060209141 @default.
- W2885309277 cites W2069152576 @default.
- W2885309277 cites W2074139663 @default.
- W2885309277 cites W2077383268 @default.
- W2885309277 cites W2078939547 @default.
- W2885309277 cites W2085277871 @default.
- W2885309277 cites W2087064593 @default.
- W2885309277 cites W2092160131 @default.
- W2885309277 cites W2097182545 @default.
- W2885309277 cites W2097766022 @default.
- W2885309277 cites W2102108744 @default.
- W2885309277 cites W2108300872 @default.
- W2885309277 cites W2110659301 @default.
- W2885309277 cites W2112821883 @default.
- W2885309277 cites W2119198491 @default.
- W2885309277 cites W2119677615 @default.
- W2885309277 cites W2119772009 @default.
- W2885309277 cites W2122810184 @default.
- W2885309277 cites W2125087906 @default.
- W2885309277 cites W2128389229 @default.
- W2885309277 cites W2130479394 @default.
- W2885309277 cites W2143146889 @default.
- W2885309277 cites W2143210482 @default.
- W2885309277 cites W2143255910 @default.
- W2885309277 cites W2147368249 @default.
- W2885309277 cites W2150668560 @default.
- W2885309277 cites W2151768209 @default.
- W2885309277 cites W2156407548 @default.
- W2885309277 cites W2156678798 @default.
- W2885309277 cites W2162165991 @default.
- W2885309277 cites W2162227169 @default.
- W2885309277 cites W2164803230 @default.
- W2885309277 cites W2166605555 @default.
- W2885309277 cites W2170383421 @default.
- W2885309277 cites W2286728526 @default.
- W2885309277 cites W2470414691 @default.
- W2885309277 cites W2531962290 @default.
- W2885309277 cites W2689292533 @default.
- W2885309277 cites W2768698520 @default.
- W2885309277 cites W2772657239 @default.
- W2885309277 cites W2789316776 @default.
- W2885309277 cites W2791248032 @default.
- W2885309277 cites W2791289172 @default.
- W2885309277 cites W4211007335 @default.
- W2885309277 cites W4230846333 @default.
- W2885309277 cites W4233355114 @default.
- W2885309277 cites W4246983621 @default.
- W2885309277 cites W4253122018 @default.
- W2885309277 cites W98466101 @default.
- W2885309277 cites W2090596103 @default.
- W2885309277 doi "https://doi.org/10.1016/j.mbs.2018.08.004" @default.
- W2885309277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30118719" @default.
- W2885309277 hasPublicationYear "2019" @default.
- W2885309277 type Work @default.
- W2885309277 sameAs 2885309277 @default.
- W2885309277 citedByCount "3" @default.
- W2885309277 countsByYear W28853092772019 @default.
- W2885309277 countsByYear W28853092772020 @default.
- W2885309277 countsByYear W28853092772022 @default.
- W2885309277 crossrefType "journal-article" @default.
- W2885309277 hasAuthorship W2885309277A5004555174 @default.
- W2885309277 hasConcept C103278499 @default.
- W2885309277 hasConcept C105795698 @default.
- W2885309277 hasConcept C115961682 @default.
- W2885309277 hasConcept C148671577 @default.
- W2885309277 hasConcept C154945302 @default.
- W2885309277 hasConcept C165064840 @default.
- W2885309277 hasConcept C171268870 @default.
- W2885309277 hasConcept C177264268 @default.
- W2885309277 hasConcept C199360897 @default.
- W2885309277 hasConcept C33923547 @default.
- W2885309277 hasConcept C41008148 @default.
- W2885309277 hasConcept C42011625 @default.