Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885311069> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2885311069 endingPage "33" @default.
- W2885311069 startingPage "21" @default.
- W2885311069 abstract "Abstract Food quality control monitoring is crucial in food processing, due to the potential of adverse effects on the health of entire populations. The traditional biochemical measurements are based on chemical analysis techniques in the laboratory, which, despite being effective, are expensive, laborious, and time consuming, making them infeasible to obtain information on biochemical measurements in time and at large scales. In this study, the performance of non-contactless high throughput passive sensing was evaluated to estimate the biochemical parameters as well as to discriminate between fruit kinds via the application of chemometric techniques based on principle component regression (PCR), partial least square regression (PLSR) as well as simple regressions. Models of PCR or PLSR included data of the (i) spectral reflectance reading from 400 to 1000 nm and (ii) selected sixteen spectral indices that were calibrated and cross-validated for biochemical parameters prediction. Results show that the selected spectral indices showed close and highly significant associations with all measured parameters of guava, mandarin and orange fruits at three different ripening degrees with coefficient of determination (R2) reach up to (R2 = 0.87; p ≤ 0.001, R2 = 0.86; p ≤ 0.001, R2 = 0.86; p ≤ 0.001, R2 = 0.80; p ≤ 0.001 and R2 = 0.42; p ≤ 0.001) for Chlorophyll a (Chl a), Chlorophyll b (Chl b), Chlorophyll t (Chl t), soluble solids content (SSC) and titratable acidity (T. Acidity), respectively. Multivariate analysis of PCR and PLSR models showed a good prediction performance of the measured parameters. For example, the PCR based on the selected sixteen spectral indices showed that a good prediction performance was obtained with coefficient of determination (R2) of 0.85, 0.85, 84, 0.76 and 0.39, and root mean square errors of prediction of 0.052 (μg cm−2), 0.099 (μg cm-2), 0.152 (μg cm-2), 0.683 (%) and 0.0485 (%) for Chl a, Chl b, and Chl t, SSC and T. Acidity for guava fruits, respectively. As well as the PLSR based on selected sixteen spectral indices showed that a good prediction performance was obtained with coefficient of determination (R2) of 0.80, 81, 82, 0.73 and 0.22, and root mean square errors of prediction of 0.100 (μg cm−2), 0.202 (μg cm-2), 0.290 (μg cm-2), 0.457 (%) and 0.0822 (%) for Chl a, Chl b, and Chl t, SSC and T. Acidity for orange fruits, respectively. The overall results demonstrate that passive reflectance sensing can be used to evaluate the quality of different fruit types via the application of chemometric techniques as well as simple regression." @default.
- W2885311069 created "2018-08-22" @default.
- W2885311069 creator A5019920080 @default.
- W2885311069 creator A5038005309 @default.
- W2885311069 creator A5053454933 @default.
- W2885311069 creator A5083411315 @default.
- W2885311069 date "2019-01-01" @default.
- W2885311069 modified "2023-09-23" @default.
- W2885311069 title "Passive reflectance sensing using regression and multivariate analysis to estimate biochemical parameters of different fruits kinds" @default.
- W2885311069 cites W1970019880 @default.
- W2885311069 cites W1992489737 @default.
- W2885311069 cites W1994614480 @default.
- W2885311069 cites W2004675407 @default.
- W2885311069 cites W2011475440 @default.
- W2885311069 cites W2038099784 @default.
- W2885311069 cites W2038212666 @default.
- W2885311069 cites W2055126950 @default.
- W2885311069 cites W2061730919 @default.
- W2885311069 cites W2067777246 @default.
- W2885311069 cites W2073503722 @default.
- W2885311069 cites W2077212930 @default.
- W2885311069 cites W2077926016 @default.
- W2885311069 cites W2096015153 @default.
- W2885311069 cites W2097018019 @default.
- W2885311069 cites W2107412299 @default.
- W2885311069 cites W2132527497 @default.
- W2885311069 cites W2162668401 @default.
- W2885311069 cites W2265601771 @default.
- W2885311069 cites W2471748090 @default.
- W2885311069 cites W2529082819 @default.
- W2885311069 cites W4243233996 @default.
- W2885311069 doi "https://doi.org/10.1016/j.scienta.2018.08.004" @default.
- W2885311069 hasPublicationYear "2019" @default.
- W2885311069 type Work @default.
- W2885311069 sameAs 2885311069 @default.
- W2885311069 citedByCount "5" @default.
- W2885311069 countsByYear W28853110692020 @default.
- W2885311069 countsByYear W28853110692022 @default.
- W2885311069 countsByYear W28853110692023 @default.
- W2885311069 crossrefType "journal-article" @default.
- W2885311069 hasAuthorship W2885311069A5019920080 @default.
- W2885311069 hasAuthorship W2885311069A5038005309 @default.
- W2885311069 hasAuthorship W2885311069A5053454933 @default.
- W2885311069 hasAuthorship W2885311069A5083411315 @default.
- W2885311069 hasConcept C105795698 @default.
- W2885311069 hasConcept C108597893 @default.
- W2885311069 hasConcept C120665830 @default.
- W2885311069 hasConcept C121332964 @default.
- W2885311069 hasConcept C152877465 @default.
- W2885311069 hasConcept C161584116 @default.
- W2885311069 hasConcept C205649164 @default.
- W2885311069 hasConcept C33923547 @default.
- W2885311069 hasConcept C38180746 @default.
- W2885311069 hasConcept C39432304 @default.
- W2885311069 hasConcept C62649853 @default.
- W2885311069 hasConcept C83546350 @default.
- W2885311069 hasConceptScore W2885311069C105795698 @default.
- W2885311069 hasConceptScore W2885311069C108597893 @default.
- W2885311069 hasConceptScore W2885311069C120665830 @default.
- W2885311069 hasConceptScore W2885311069C121332964 @default.
- W2885311069 hasConceptScore W2885311069C152877465 @default.
- W2885311069 hasConceptScore W2885311069C161584116 @default.
- W2885311069 hasConceptScore W2885311069C205649164 @default.
- W2885311069 hasConceptScore W2885311069C33923547 @default.
- W2885311069 hasConceptScore W2885311069C38180746 @default.
- W2885311069 hasConceptScore W2885311069C39432304 @default.
- W2885311069 hasConceptScore W2885311069C62649853 @default.
- W2885311069 hasConceptScore W2885311069C83546350 @default.
- W2885311069 hasLocation W28853110691 @default.
- W2885311069 hasOpenAccess W2885311069 @default.
- W2885311069 hasPrimaryLocation W28853110691 @default.
- W2885311069 hasRelatedWork W2007006185 @default.
- W2885311069 hasRelatedWork W2030032507 @default.
- W2885311069 hasRelatedWork W2065439233 @default.
- W2885311069 hasRelatedWork W2117787183 @default.
- W2885311069 hasRelatedWork W2149615384 @default.
- W2885311069 hasRelatedWork W2359966159 @default.
- W2885311069 hasRelatedWork W2360172696 @default.
- W2885311069 hasRelatedWork W2386886284 @default.
- W2885311069 hasRelatedWork W2393578503 @default.
- W2885311069 hasRelatedWork W2048136123 @default.
- W2885311069 hasVolume "243" @default.
- W2885311069 isParatext "false" @default.
- W2885311069 isRetracted "false" @default.
- W2885311069 magId "2885311069" @default.
- W2885311069 workType "article" @default.