Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885321421> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2885321421 abstract "We consider the distributed synchronous message passing model, also known as the LOCAL model. In this model the input graph G represents a network, where each vertex in the graph is a processor and each edge is a communication line between two processors. Symmetry breaking problems are among the most studied problems in this model [4], [7], [9]–[11], [13], [17], [18], [23], [24], [26]. In this paper we devise a general method for solving symmetry breaking problems in graphs with bounded diversity. Roughly speaking, the diversity of a graph is the maximum number of maximal cliques a vertex belongs to. This general method uses a new approach which utilizes a structure called a connector. We build a series of such connectors, each of which simplifies the previous one by decreasing maximum clique size. Eventually, cliques becomes sufficiently small and have some additional properties that allow us to bound the maximum degree of the connectors. Then it becomes possible to employ efficient symmetry-breaking algorithms for bounded-degree graphs and extend the results to all the connectors in the series in backward order, until we reach a solution for the original graph. We use the ideas of this general method to achieve the following results. First, we devise an improved algorithm for maximal matching with running time of O(log(S)(D(G) + log* n)), where D(G) is the diversity of G and S(G) is the maximum clique size. The best currently-known deterministic result for general graphs is O(log^2 ? log n) [13]. This result is also the best currently-known for graphs with bounded diversity, hence our result constitutes an improvement for graphs with D(G) = o(log ? log n). Another algorithm of ours for the same problem has a running time of O(D(G)2 + log* n). For graphs with D(G) = O(1) this shows a separation of complexities between the maximal matching problem and the maximal independent set problem. Indeed, in such graphs our algorithm computes a maximal matching within O(log n) time, while computing a maximal independent set requires ?( (log n / log log n)) time. This is the first result for any family of graphs that shows that maximal matching is provably easier than maximal independent set in the distributed setting. Moreover, using the same methods, we devise improved algorithms for ruling sets in graphs with bounded diversity. We also obtain an improved result for the wider family of graphs with bounded neighborhood independence ?. Specifically, we compute a maximal matching within O(? log ?+log* n) time in such graphs." @default.
- W2885321421 created "2018-08-22" @default.
- W2885321421 creator A5033078782 @default.
- W2885321421 creator A5057471294 @default.
- W2885321421 date "2018-05-01" @default.
- W2885321421 modified "2023-09-26" @default.
- W2885321421 title "Distributed Symmetry Breaking in Graphs with Bounded Diversity" @default.
- W2885321421 cites W1489660296 @default.
- W2885321421 cites W1964089073 @default.
- W2885321421 cites W1987125980 @default.
- W2885321421 cites W1992776880 @default.
- W2885321421 cites W1996066664 @default.
- W2885321421 cites W1997707549 @default.
- W2885321421 cites W2006040238 @default.
- W2885321421 cites W2011894656 @default.
- W2885321421 cites W2065826935 @default.
- W2885321421 cites W2067661972 @default.
- W2885321421 cites W2100061495 @default.
- W2885321421 cites W2109368894 @default.
- W2885321421 cites W2112009244 @default.
- W2885321421 cites W2136185479 @default.
- W2885321421 cites W2157459553 @default.
- W2885321421 cites W2161176300 @default.
- W2885321421 cites W2165441947 @default.
- W2885321421 cites W2169102947 @default.
- W2885321421 cites W2542676400 @default.
- W2885321421 cites W2554518674 @default.
- W2885321421 cites W2737971506 @default.
- W2885321421 cites W2953390354 @default.
- W2885321421 cites W2963830589 @default.
- W2885321421 cites W4229705835 @default.
- W2885321421 doi "https://doi.org/10.1109/ipdps.2018.00082" @default.
- W2885321421 hasPublicationYear "2018" @default.
- W2885321421 type Work @default.
- W2885321421 sameAs 2885321421 @default.
- W2885321421 citedByCount "9" @default.
- W2885321421 countsByYear W28853214212018 @default.
- W2885321421 countsByYear W28853214212019 @default.
- W2885321421 countsByYear W28853214212020 @default.
- W2885321421 countsByYear W28853214212021 @default.
- W2885321421 countsByYear W28853214212022 @default.
- W2885321421 crossrefType "proceedings-article" @default.
- W2885321421 hasAuthorship W2885321421A5033078782 @default.
- W2885321421 hasAuthorship W2885321421A5057471294 @default.
- W2885321421 hasConcept C118615104 @default.
- W2885321421 hasConcept C121332964 @default.
- W2885321421 hasConcept C134306372 @default.
- W2885321421 hasConcept C144024400 @default.
- W2885321421 hasConcept C19165224 @default.
- W2885321421 hasConcept C204795200 @default.
- W2885321421 hasConcept C2524010 @default.
- W2885321421 hasConcept C2779886137 @default.
- W2885321421 hasConcept C2781316041 @default.
- W2885321421 hasConcept C33923547 @default.
- W2885321421 hasConcept C34388435 @default.
- W2885321421 hasConcept C41008148 @default.
- W2885321421 hasConcept C62520636 @default.
- W2885321421 hasConceptScore W2885321421C118615104 @default.
- W2885321421 hasConceptScore W2885321421C121332964 @default.
- W2885321421 hasConceptScore W2885321421C134306372 @default.
- W2885321421 hasConceptScore W2885321421C144024400 @default.
- W2885321421 hasConceptScore W2885321421C19165224 @default.
- W2885321421 hasConceptScore W2885321421C204795200 @default.
- W2885321421 hasConceptScore W2885321421C2524010 @default.
- W2885321421 hasConceptScore W2885321421C2779886137 @default.
- W2885321421 hasConceptScore W2885321421C2781316041 @default.
- W2885321421 hasConceptScore W2885321421C33923547 @default.
- W2885321421 hasConceptScore W2885321421C34388435 @default.
- W2885321421 hasConceptScore W2885321421C41008148 @default.
- W2885321421 hasConceptScore W2885321421C62520636 @default.
- W2885321421 hasLocation W28853214211 @default.
- W2885321421 hasOpenAccess W2885321421 @default.
- W2885321421 hasPrimaryLocation W28853214211 @default.
- W2885321421 hasRelatedWork W2012293611 @default.
- W2885321421 hasRelatedWork W2027251766 @default.
- W2885321421 hasRelatedWork W2042726902 @default.
- W2885321421 hasRelatedWork W2054711918 @default.
- W2885321421 hasRelatedWork W2068486408 @default.
- W2885321421 hasRelatedWork W2148351559 @default.
- W2885321421 hasRelatedWork W2154261913 @default.
- W2885321421 hasRelatedWork W2224648581 @default.
- W2885321421 hasRelatedWork W2315257169 @default.
- W2885321421 hasRelatedWork W3080875783 @default.
- W2885321421 isParatext "false" @default.
- W2885321421 isRetracted "false" @default.
- W2885321421 magId "2885321421" @default.
- W2885321421 workType "article" @default.