Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885356983> ?p ?o ?g. }
- W2885356983 endingPage "921" @default.
- W2885356983 startingPage "913" @default.
- W2885356983 abstract "Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications." @default.
- W2885356983 created "2018-08-22" @default.
- W2885356983 creator A5001879170 @default.
- W2885356983 creator A5050649018 @default.
- W2885356983 creator A5062612627 @default.
- W2885356983 creator A5080300367 @default.
- W2885356983 date "2018-11-01" @default.
- W2885356983 modified "2023-09-27" @default.
- W2885356983 title "Oxidation limited thermal boundary conductance at metal-graphene interface" @default.
- W2885356983 cites W1765373695 @default.
- W2885356983 cites W1899552348 @default.
- W2885356983 cites W1967202721 @default.
- W2885356983 cites W1967394619 @default.
- W2885356983 cites W1969892760 @default.
- W2885356983 cites W1975910404 @default.
- W2885356983 cites W1976431068 @default.
- W2885356983 cites W1978408877 @default.
- W2885356983 cites W1979345035 @default.
- W2885356983 cites W1986261297 @default.
- W2885356983 cites W1991859775 @default.
- W2885356983 cites W1991872853 @default.
- W2885356983 cites W1992852436 @default.
- W2885356983 cites W1993323886 @default.
- W2885356983 cites W1995639532 @default.
- W2885356983 cites W1996580770 @default.
- W2885356983 cites W1997014239 @default.
- W2885356983 cites W2007310378 @default.
- W2885356983 cites W2009590881 @default.
- W2885356983 cites W2014073618 @default.
- W2885356983 cites W2014694192 @default.
- W2885356983 cites W2020913774 @default.
- W2885356983 cites W2024261075 @default.
- W2885356983 cites W2025194570 @default.
- W2885356983 cites W2027139364 @default.
- W2885356983 cites W2028129304 @default.
- W2885356983 cites W2035438942 @default.
- W2885356983 cites W2040497779 @default.
- W2885356983 cites W2041806780 @default.
- W2885356983 cites W2051105944 @default.
- W2885356983 cites W2051846105 @default.
- W2885356983 cites W2053027007 @default.
- W2885356983 cites W2055193423 @default.
- W2885356983 cites W2055886745 @default.
- W2885356983 cites W2058122340 @default.
- W2885356983 cites W2058272047 @default.
- W2885356983 cites W2058274078 @default.
- W2885356983 cites W2065318472 @default.
- W2885356983 cites W2068798373 @default.
- W2885356983 cites W2073675736 @default.
- W2885356983 cites W2076220136 @default.
- W2885356983 cites W2077263179 @default.
- W2885356983 cites W2077888531 @default.
- W2885356983 cites W2078817444 @default.
- W2885356983 cites W2080781051 @default.
- W2885356983 cites W2086662549 @default.
- W2885356983 cites W2088430718 @default.
- W2885356983 cites W2091070668 @default.
- W2885356983 cites W2091997682 @default.
- W2885356983 cites W2092188263 @default.
- W2885356983 cites W2092321736 @default.
- W2885356983 cites W2093536812 @default.
- W2885356983 cites W2102415385 @default.
- W2885356983 cites W2106298613 @default.
- W2885356983 cites W2108953022 @default.
- W2885356983 cites W2118492507 @default.
- W2885356983 cites W2121444296 @default.
- W2885356983 cites W2121990892 @default.
- W2885356983 cites W2124209259 @default.
- W2885356983 cites W2125284466 @default.
- W2885356983 cites W2136334331 @default.
- W2885356983 cites W2143788357 @default.
- W2885356983 cites W2146564548 @default.
- W2885356983 cites W2152008325 @default.
- W2885356983 cites W2161069807 @default.
- W2885356983 cites W2177615189 @default.
- W2885356983 cites W2235679284 @default.
- W2885356983 cites W2238896166 @default.
- W2885356983 cites W2314720856 @default.
- W2885356983 cites W2318767045 @default.
- W2885356983 cites W2342918327 @default.
- W2885356983 cites W2396859594 @default.
- W2885356983 cites W2411855483 @default.
- W2885356983 cites W2560991987 @default.
- W2885356983 cites W2574432294 @default.
- W2885356983 cites W2605963437 @default.
- W2885356983 cites W2799608287 @default.
- W2885356983 cites W2963119072 @default.
- W2885356983 cites W3100367984 @default.
- W2885356983 cites W3101219038 @default.
- W2885356983 cites W3101746025 @default.
- W2885356983 cites W3104849318 @default.
- W2885356983 doi "https://doi.org/10.1016/j.carbon.2018.08.002" @default.
- W2885356983 hasPublicationYear "2018" @default.
- W2885356983 type Work @default.
- W2885356983 sameAs 2885356983 @default.
- W2885356983 citedByCount "12" @default.
- W2885356983 countsByYear W28853569832019 @default.
- W2885356983 countsByYear W28853569832020 @default.