Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885372267> ?p ?o ?g. }
- W2885372267 endingPage "480" @default.
- W2885372267 startingPage "464" @default.
- W2885372267 abstract "In the past decade, substantial progress has been made in model-based optimization of sampling designs for mapping. This paper is an update of the overview of sampling designs for mapping presented by de Gruijter et al. (2006). For model-based estimation of values at unobserved points (mapping), probability sampling is not required, which opens up the possibility of optimized non-probability sampling. Non-probability sampling designs for mapping are regular grid sampling, spatial coverage sampling, k-means sampling, conditioned Latin hypercube sampling, response surface sampling, Kennard-Stone sampling and model-based sampling. In model-based sampling a preliminary model of the spatial variation of the soil variable of interest is used for optimizing the sample size and or the spatial coordinates of the sampling locations. Kriging requires knowledge of the variogram. Sampling designs for variogram estimation are nested sampling, independent random sampling of pairs of points, and model-based designs in which either the uncertainty about the variogram parameters, or the uncertainty about the kriging variance is minimized. Various minimization criteria have been proposed for designing a single sample that is suitable both for estimating the variogram and for mapping. For map validation, additional probability sampling is recommended, so that unbiased estimates of map quality indices and their standard errors can be obtained. For all sampling designs, R scripts are available in the supplement. Further research is recommended on sampling designs for mapping with machine learning techniques, designs that are robust against deviations of modeling assumptions, designs tailored at mapping multiple soil variables of interest and soil classes or fuzzy memberships, and probability sampling designs that are efficient both for design-based estimation of populations means and for model-based mapping." @default.
- W2885372267 created "2018-08-22" @default.
- W2885372267 creator A5001903786 @default.
- W2885372267 date "2019-03-01" @default.
- W2885372267 modified "2023-10-12" @default.
- W2885372267 title "Sampling for digital soil mapping: A tutorial supported by R scripts" @default.
- W2885372267 cites W1604028501 @default.
- W2885372267 cites W1623074706 @default.
- W2885372267 cites W1966384917 @default.
- W2885372267 cites W1966661308 @default.
- W2885372267 cites W1967994886 @default.
- W2885372267 cites W1986749561 @default.
- W2885372267 cites W1993703763 @default.
- W2885372267 cites W1997837167 @default.
- W2885372267 cites W2006627800 @default.
- W2885372267 cites W2007873570 @default.
- W2885372267 cites W2017422910 @default.
- W2885372267 cites W2017661617 @default.
- W2885372267 cites W2019655708 @default.
- W2885372267 cites W2023312901 @default.
- W2885372267 cites W2024060531 @default.
- W2885372267 cites W2030819916 @default.
- W2885372267 cites W2032435391 @default.
- W2885372267 cites W2036664398 @default.
- W2885372267 cites W2040496597 @default.
- W2885372267 cites W2050179592 @default.
- W2885372267 cites W2055127685 @default.
- W2885372267 cites W2058181555 @default.
- W2885372267 cites W2058326012 @default.
- W2885372267 cites W2064345732 @default.
- W2885372267 cites W2069368625 @default.
- W2885372267 cites W2084370905 @default.
- W2885372267 cites W2084829975 @default.
- W2885372267 cites W2086216148 @default.
- W2885372267 cites W2088617152 @default.
- W2885372267 cites W2103705240 @default.
- W2885372267 cites W2116569388 @default.
- W2885372267 cites W2116634176 @default.
- W2885372267 cites W2123470631 @default.
- W2885372267 cites W2124233655 @default.
- W2885372267 cites W2144661611 @default.
- W2885372267 cites W2145874683 @default.
- W2885372267 cites W2147798740 @default.
- W2885372267 cites W2153490485 @default.
- W2885372267 cites W2155985804 @default.
- W2885372267 cites W2168692957 @default.
- W2885372267 cites W2185527555 @default.
- W2885372267 cites W2300958255 @default.
- W2885372267 cites W2316994921 @default.
- W2885372267 cites W2616449358 @default.
- W2885372267 cites W2746591212 @default.
- W2885372267 cites W2773845494 @default.
- W2885372267 cites W2774397624 @default.
- W2885372267 cites W2782641957 @default.
- W2885372267 cites W2789457670 @default.
- W2885372267 cites W4241960248 @default.
- W2885372267 doi "https://doi.org/10.1016/j.geoderma.2018.07.036" @default.
- W2885372267 hasPublicationYear "2019" @default.
- W2885372267 type Work @default.
- W2885372267 sameAs 2885372267 @default.
- W2885372267 citedByCount "68" @default.
- W2885372267 countsByYear W28853722672018 @default.
- W2885372267 countsByYear W28853722672019 @default.
- W2885372267 countsByYear W28853722672020 @default.
- W2885372267 countsByYear W28853722672021 @default.
- W2885372267 countsByYear W28853722672022 @default.
- W2885372267 countsByYear W28853722672023 @default.
- W2885372267 crossrefType "journal-article" @default.
- W2885372267 hasAuthorship W2885372267A5001903786 @default.
- W2885372267 hasConcept C105795698 @default.
- W2885372267 hasConcept C106131492 @default.
- W2885372267 hasConcept C129848803 @default.
- W2885372267 hasConcept C140779682 @default.
- W2885372267 hasConcept C144024400 @default.
- W2885372267 hasConcept C149923435 @default.
- W2885372267 hasConcept C154881674 @default.
- W2885372267 hasConcept C170593435 @default.
- W2885372267 hasConcept C192489979 @default.
- W2885372267 hasConcept C19499675 @default.
- W2885372267 hasConcept C20820323 @default.
- W2885372267 hasConcept C2908647359 @default.
- W2885372267 hasConcept C31972630 @default.
- W2885372267 hasConcept C33923547 @default.
- W2885372267 hasConcept C41008148 @default.
- W2885372267 hasConcept C49898467 @default.
- W2885372267 hasConcept C52740198 @default.
- W2885372267 hasConcept C75373757 @default.
- W2885372267 hasConcept C81692654 @default.
- W2885372267 hasConceptScore W2885372267C105795698 @default.
- W2885372267 hasConceptScore W2885372267C106131492 @default.
- W2885372267 hasConceptScore W2885372267C129848803 @default.
- W2885372267 hasConceptScore W2885372267C140779682 @default.
- W2885372267 hasConceptScore W2885372267C144024400 @default.
- W2885372267 hasConceptScore W2885372267C149923435 @default.
- W2885372267 hasConceptScore W2885372267C154881674 @default.
- W2885372267 hasConceptScore W2885372267C170593435 @default.
- W2885372267 hasConceptScore W2885372267C192489979 @default.
- W2885372267 hasConceptScore W2885372267C19499675 @default.