Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885397178> ?p ?o ?g. }
- W2885397178 endingPage "22100" @default.
- W2885397178 startingPage "22100" @default.
- W2885397178 abstract "A machine learning assisted modal power analyzing scheme designed for optical modes in integrated multi-mode waveguides is proposed and studied in this work. Convolutional neural networks (CNNs) are successfully trained to correlate the far-field diffraction intensity patterns of a superposition of multiple waveguide modes with its modal power distribution. In particular, a specialized CNN is trained to analyze thin optical waveguides, which are single-moded along one axis and multi-moded along the other axis. A full-scale CNN is also trained to cross-validate the results obtained from this specialized CNN model. Prediction accuracy for modal power is benchmarked statistically with square error and absolute error distribution. It is found that the overall accuracy of our trained specialized CNN is very satisfactory for thin optical waveguides while that of our trained full-scale CNN remains nearly unchanged but the training time doubles. This approach is further generalized and applied to a waveguide that is multi-moded along both horizontal and vertical axes and the influence of noise on our trained network is studied. Overall, we find that the performance in this general condition keeps nearly unchanged. This new concept of analyzing modal power may open the door for high fidelity information recovery in far field and holds great promise for potential applications in both integrated and fiber-based spatial-division demultiplexing." @default.
- W2885397178 created "2018-08-22" @default.
- W2885397178 creator A5006770931 @default.
- W2885397178 creator A5011068723 @default.
- W2885397178 creator A5031875473 @default.
- W2885397178 creator A5041686898 @default.
- W2885397178 creator A5044618010 @default.
- W2885397178 creator A5049396596 @default.
- W2885397178 creator A5051120315 @default.
- W2885397178 creator A5052439811 @default.
- W2885397178 date "2018-08-10" @default.
- W2885397178 modified "2023-10-11" @default.
- W2885397178 title "Analyzing modal power in multi-mode waveguide via machine learning" @default.
- W2885397178 cites W1534574451 @default.
- W2885397178 cites W1572063013 @default.
- W2885397178 cites W1663973292 @default.
- W2885397178 cites W1983904903 @default.
- W2885397178 cites W1990371040 @default.
- W2885397178 cites W2000531554 @default.
- W2885397178 cites W2004378928 @default.
- W2885397178 cites W2006940593 @default.
- W2885397178 cites W2017845356 @default.
- W2885397178 cites W2017986009 @default.
- W2885397178 cites W2022508996 @default.
- W2885397178 cites W2066352165 @default.
- W2885397178 cites W2080001586 @default.
- W2885397178 cites W2080037083 @default.
- W2885397178 cites W2094391542 @default.
- W2885397178 cites W2100606810 @default.
- W2885397178 cites W2109740551 @default.
- W2885397178 cites W2113017020 @default.
- W2885397178 cites W2132929448 @default.
- W2885397178 cites W2140434852 @default.
- W2885397178 cites W2151779999 @default.
- W2885397178 cites W2159784873 @default.
- W2885397178 cites W2165691101 @default.
- W2885397178 cites W2168893862 @default.
- W2885397178 cites W2745071365 @default.
- W2885397178 cites W2793437847 @default.
- W2885397178 doi "https://doi.org/10.1364/oe.26.022100" @default.
- W2885397178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30130908" @default.
- W2885397178 hasPublicationYear "2018" @default.
- W2885397178 type Work @default.
- W2885397178 sameAs 2885397178 @default.
- W2885397178 citedByCount "16" @default.
- W2885397178 countsByYear W28853971782019 @default.
- W2885397178 countsByYear W28853971782020 @default.
- W2885397178 countsByYear W28853971782021 @default.
- W2885397178 countsByYear W28853971782022 @default.
- W2885397178 countsByYear W28853971782023 @default.
- W2885397178 crossrefType "journal-article" @default.
- W2885397178 hasAuthorship W2885397178A5006770931 @default.
- W2885397178 hasAuthorship W2885397178A5011068723 @default.
- W2885397178 hasAuthorship W2885397178A5031875473 @default.
- W2885397178 hasAuthorship W2885397178A5041686898 @default.
- W2885397178 hasAuthorship W2885397178A5044618010 @default.
- W2885397178 hasAuthorship W2885397178A5049396596 @default.
- W2885397178 hasAuthorship W2885397178A5051120315 @default.
- W2885397178 hasAuthorship W2885397178A5052439811 @default.
- W2885397178 hasBestOaLocation W28853971781 @default.
- W2885397178 hasConcept C115961682 @default.
- W2885397178 hasConcept C120665830 @default.
- W2885397178 hasConcept C121332964 @default.
- W2885397178 hasConcept C154945302 @default.
- W2885397178 hasConcept C163258240 @default.
- W2885397178 hasConcept C185592680 @default.
- W2885397178 hasConcept C188027245 @default.
- W2885397178 hasConcept C191161701 @default.
- W2885397178 hasConcept C200687136 @default.
- W2885397178 hasConcept C27753989 @default.
- W2885397178 hasConcept C41008148 @default.
- W2885397178 hasConcept C50644808 @default.
- W2885397178 hasConcept C520434653 @default.
- W2885397178 hasConcept C62520636 @default.
- W2885397178 hasConcept C71139939 @default.
- W2885397178 hasConcept C81363708 @default.
- W2885397178 hasConcept C99498987 @default.
- W2885397178 hasConceptScore W2885397178C115961682 @default.
- W2885397178 hasConceptScore W2885397178C120665830 @default.
- W2885397178 hasConceptScore W2885397178C121332964 @default.
- W2885397178 hasConceptScore W2885397178C154945302 @default.
- W2885397178 hasConceptScore W2885397178C163258240 @default.
- W2885397178 hasConceptScore W2885397178C185592680 @default.
- W2885397178 hasConceptScore W2885397178C188027245 @default.
- W2885397178 hasConceptScore W2885397178C191161701 @default.
- W2885397178 hasConceptScore W2885397178C200687136 @default.
- W2885397178 hasConceptScore W2885397178C27753989 @default.
- W2885397178 hasConceptScore W2885397178C41008148 @default.
- W2885397178 hasConceptScore W2885397178C50644808 @default.
- W2885397178 hasConceptScore W2885397178C520434653 @default.
- W2885397178 hasConceptScore W2885397178C62520636 @default.
- W2885397178 hasConceptScore W2885397178C71139939 @default.
- W2885397178 hasConceptScore W2885397178C81363708 @default.
- W2885397178 hasConceptScore W2885397178C99498987 @default.
- W2885397178 hasFunder F4320322769 @default.
- W2885397178 hasFunder F4320335777 @default.
- W2885397178 hasIssue "17" @default.
- W2885397178 hasLocation W28853971781 @default.