Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885408847> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2885408847 abstract "The k-nearest neighbor (kNN) classification has been widely adopted in data mining applications. In the age of big data, kNN classification process has to be outsourced to the cloud. However, as data may contain sensitive information, outsourcing data services directly to public clouds inevitably raises privacy concerns. To ensure the privacy of data, it is a well- known method to encrypt them prior to uploading to the cloud, which also brings great challenges to effective kNN classification. Homomorphic encryption (HE) allows operations on encrypted data, which provides a viable solution to kNN classification over encrypted data. However, existing works using HE to enable secure kNN classification all encrypt data attribute-wise that are limited by classification efficiency. In this paper, we designed an efficient and secure kNN classification protocol over encrypted data using vector HE, namely ESkNNC, which could encrypt data record-wise. Security analysis shows that ESkNNC achieves function secrecy, besides confidentiality of data, confidentiality of query record, and hiding data access patterns. Compared with kNN classification techniques over plaintexts, ESkNNC achieves the same 98% accuracy with the precision of 2 digits. Furthermore, we propose a batching method of test data that significantly saves communication cost up to 90%." @default.
- W2885408847 created "2018-08-22" @default.
- W2885408847 creator A5004716871 @default.
- W2885408847 creator A5048390686 @default.
- W2885408847 creator A5068252474 @default.
- W2885408847 creator A5081730857 @default.
- W2885408847 date "2018-05-01" @default.
- W2885408847 modified "2023-09-25" @default.
- W2885408847 title "Efficient and Secure kNN Classification over Encrypted Data Using Vector Homomorphic Encryption" @default.
- W2885408847 cites W1519460759 @default.
- W2885408847 cites W1982306593 @default.
- W2885408847 cites W1997456385 @default.
- W2885408847 cites W2074356711 @default.
- W2885408847 cites W2109638884 @default.
- W2885408847 cites W2158112071 @default.
- W2885408847 cites W2343414189 @default.
- W2885408847 cites W2417915283 @default.
- W2885408847 cites W2505406653 @default.
- W2885408847 cites W2522626811 @default.
- W2885408847 cites W2543747391 @default.
- W2885408847 cites W2739466008 @default.
- W2885408847 doi "https://doi.org/10.1109/icc.2018.8422438" @default.
- W2885408847 hasPublicationYear "2018" @default.
- W2885408847 type Work @default.
- W2885408847 sameAs 2885408847 @default.
- W2885408847 citedByCount "10" @default.
- W2885408847 countsByYear W28854088472019 @default.
- W2885408847 countsByYear W28854088472020 @default.
- W2885408847 countsByYear W28854088472021 @default.
- W2885408847 countsByYear W28854088472022 @default.
- W2885408847 crossrefType "proceedings-article" @default.
- W2885408847 hasAuthorship W2885408847A5004716871 @default.
- W2885408847 hasAuthorship W2885408847A5048390686 @default.
- W2885408847 hasAuthorship W2885408847A5068252474 @default.
- W2885408847 hasAuthorship W2885408847A5081730857 @default.
- W2885408847 hasConcept C148730421 @default.
- W2885408847 hasConcept C154945302 @default.
- W2885408847 hasConcept C158338273 @default.
- W2885408847 hasConcept C38652104 @default.
- W2885408847 hasConcept C41008148 @default.
- W2885408847 hasConcept C80444323 @default.
- W2885408847 hasConceptScore W2885408847C148730421 @default.
- W2885408847 hasConceptScore W2885408847C154945302 @default.
- W2885408847 hasConceptScore W2885408847C158338273 @default.
- W2885408847 hasConceptScore W2885408847C38652104 @default.
- W2885408847 hasConceptScore W2885408847C41008148 @default.
- W2885408847 hasConceptScore W2885408847C80444323 @default.
- W2885408847 hasLocation W28854088471 @default.
- W2885408847 hasOpenAccess W2885408847 @default.
- W2885408847 hasPrimaryLocation W28854088471 @default.
- W2885408847 hasRelatedWork W1857520831 @default.
- W2885408847 hasRelatedWork W1982306593 @default.
- W2885408847 hasRelatedWork W2340393497 @default.
- W2885408847 hasRelatedWork W2395982605 @default.
- W2885408847 hasRelatedWork W2467674248 @default.
- W2885408847 hasRelatedWork W2471310969 @default.
- W2885408847 hasRelatedWork W2593272983 @default.
- W2885408847 hasRelatedWork W2899409651 @default.
- W2885408847 hasRelatedWork W2963369796 @default.
- W2885408847 hasRelatedWork W4289362701 @default.
- W2885408847 isParatext "false" @default.
- W2885408847 isRetracted "false" @default.
- W2885408847 magId "2885408847" @default.
- W2885408847 workType "article" @default.