Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885453527> ?p ?o ?g. }
- W2885453527 endingPage "1004" @default.
- W2885453527 startingPage "998" @default.
- W2885453527 abstract "Recent years have seen a significant amount of transportation data collected from multiple sources including road sensors, probe, GPS, CCTV and incident reports. Similar to many other industries, transportation has entered the generation of big data. With a rich volume of traffic data, it is challenging to build reliable prediction models based on traditional shallow machine learning methods. Deep learning is a new state-of-the-art machine learning approach which has been of great interest in both academic research and industrial applications. This study reviews recent studies of deep learning for popular topics in processing traffic data including transportation network representation, traffic flow forecasting, traffic signal control, automatic vehicle detection, traffic incident processing, travel demand prediction, autonomous driving and driver behaviours. In general, the use of deep learning systems in transportation is still limited and there are potential limitations for utilising this advanced approach to improve prediction models." @default.
- W2885453527 created "2018-08-22" @default.
- W2885453527 creator A5000218861 @default.
- W2885453527 creator A5030147577 @default.
- W2885453527 creator A5032114119 @default.
- W2885453527 creator A5063364551 @default.
- W2885453527 date "2018-07-30" @default.
- W2885453527 modified "2023-10-16" @default.
- W2885453527 title "Deep learning methods in transportation domain: a review" @default.
- W2885453527 cites W1509749701 @default.
- W2885453527 cites W1600744878 @default.
- W2885453527 cites W1894439495 @default.
- W2885453527 cites W1964812476 @default.
- W2885453527 cites W1970088388 @default.
- W2885453527 cites W1982978808 @default.
- W2885453527 cites W2020070197 @default.
- W2885453527 cites W2022508996 @default.
- W2885453527 cites W2062017159 @default.
- W2885453527 cites W2075932300 @default.
- W2885453527 cites W2076063813 @default.
- W2885453527 cites W2088338354 @default.
- W2885453527 cites W2088595989 @default.
- W2885453527 cites W2094726855 @default.
- W2885453527 cites W2097443710 @default.
- W2885453527 cites W2112739286 @default.
- W2885453527 cites W2119554284 @default.
- W2885453527 cites W2123229215 @default.
- W2885453527 cites W2125001944 @default.
- W2885453527 cites W2134430874 @default.
- W2885453527 cites W2136922672 @default.
- W2885453527 cites W2143612262 @default.
- W2885453527 cites W2144015117 @default.
- W2885453527 cites W2145339207 @default.
- W2885453527 cites W2150010190 @default.
- W2885453527 cites W2160815625 @default.
- W2885453527 cites W2165991108 @default.
- W2885453527 cites W2498017881 @default.
- W2885453527 cites W2573587735 @default.
- W2885453527 cites W2583806860 @default.
- W2885453527 cites W2593182953 @default.
- W2885453527 cites W2621708365 @default.
- W2885453527 cites W2695874637 @default.
- W2885453527 cites W2735546984 @default.
- W2885453527 cites W2751802138 @default.
- W2885453527 cites W2753089952 @default.
- W2885453527 cites W2774505043 @default.
- W2885453527 cites W2913340405 @default.
- W2885453527 cites W2919115771 @default.
- W2885453527 cites W3104764698 @default.
- W2885453527 cites W4231109964 @default.
- W2885453527 doi "https://doi.org/10.1049/iet-its.2018.0064" @default.
- W2885453527 hasPublicationYear "2018" @default.
- W2885453527 type Work @default.
- W2885453527 sameAs 2885453527 @default.
- W2885453527 citedByCount "155" @default.
- W2885453527 countsByYear W28854535272019 @default.
- W2885453527 countsByYear W28854535272020 @default.
- W2885453527 countsByYear W28854535272021 @default.
- W2885453527 countsByYear W28854535272022 @default.
- W2885453527 countsByYear W28854535272023 @default.
- W2885453527 crossrefType "journal-article" @default.
- W2885453527 hasAuthorship W2885453527A5000218861 @default.
- W2885453527 hasAuthorship W2885453527A5030147577 @default.
- W2885453527 hasAuthorship W2885453527A5032114119 @default.
- W2885453527 hasAuthorship W2885453527A5063364551 @default.
- W2885453527 hasConcept C108583219 @default.
- W2885453527 hasConcept C114809511 @default.
- W2885453527 hasConcept C119857082 @default.
- W2885453527 hasConcept C124101348 @default.
- W2885453527 hasConcept C126255220 @default.
- W2885453527 hasConcept C127413603 @default.
- W2885453527 hasConcept C134306372 @default.
- W2885453527 hasConcept C154945302 @default.
- W2885453527 hasConcept C207512268 @default.
- W2885453527 hasConcept C22212356 @default.
- W2885453527 hasConcept C2522767166 @default.
- W2885453527 hasConcept C2779888511 @default.
- W2885453527 hasConcept C33923547 @default.
- W2885453527 hasConcept C36503486 @default.
- W2885453527 hasConcept C38652104 @default.
- W2885453527 hasConcept C41008148 @default.
- W2885453527 hasConcept C42693407 @default.
- W2885453527 hasConcept C47796450 @default.
- W2885453527 hasConcept C60229501 @default.
- W2885453527 hasConcept C64093975 @default.
- W2885453527 hasConcept C75684735 @default.
- W2885453527 hasConcept C76155785 @default.
- W2885453527 hasConceptScore W2885453527C108583219 @default.
- W2885453527 hasConceptScore W2885453527C114809511 @default.
- W2885453527 hasConceptScore W2885453527C119857082 @default.
- W2885453527 hasConceptScore W2885453527C124101348 @default.
- W2885453527 hasConceptScore W2885453527C126255220 @default.
- W2885453527 hasConceptScore W2885453527C127413603 @default.
- W2885453527 hasConceptScore W2885453527C134306372 @default.
- W2885453527 hasConceptScore W2885453527C154945302 @default.
- W2885453527 hasConceptScore W2885453527C207512268 @default.
- W2885453527 hasConceptScore W2885453527C22212356 @default.
- W2885453527 hasConceptScore W2885453527C2522767166 @default.