Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885473265> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2885473265 abstract "Uncertain data cannot be processed by using the regular tools and techniques of clear data. Special techniques like fuzzy set, rough set, and soft set need to be utilized when dealing with uncertain data, and each special technique comes with its own advantages and snags. Soft set is considered as the most appropriate of these techniques. A soft set application represents uncertain data in tabular form where all values are represented by 0 or 1. Researchers use soft set representation in a number of applications involving decision making, parameter reduction, medical diagnosis, and conflict analysis. Soft set binary data may be missing due to communicational errors or viral attacks etc. Soft sets with incomplete data cannot be used in applications. Few researchers have worked on data filling and recalculating incomplete soft sets, and the current research focuses on predicting missing values and decision values from non-missing data or aggregates. A soft set needs to be preprocessed in order to obtain aggregates while no preprocessing is needed when aggregates are not required. Therefore, this research discusses the existing techniques in terms of preprocessed and unprocessed soft sets. The currently available approaches in the preprocessed category recalculate partial missing data from aggregates, yet are unable to use the set of aggregates for recalculating entire values. This research presents a mathematical technique capable of recalculating overall missing values from available aggregates.Also investigated are the techniques belonging to the unprocessed category, among them being DFIS, a novel data filling approach for an incomplete soft set, which seems to be the most suitable technique in handling incomplete soft set data. The result shows that DFIS possesses a persisting accuracy problem in prediction. DFIS predicts missing values through association between parameters, yet makes no distinction between the different associations. Thus, it ignores the role of the strongest association, which in turn results in low accuracy. This research rectifies this particular DFIS issue by using a new prediction technique through strongest association (PSA). The experimental result validates the high accuracy of PSA over DFIS after implementing both techniques in MATLAB and testing for data filling using bench mark data sets. Further, this research applies PSA to online social networks (OSN) and detects a new kind of network community for those nodes that are associated with each other. The new network community is named ‗virtual community‘ and the inter-associated nodes are named ‗prime nodes‘. Researchers have found that the unavailability of complete OSN nodes results in a low accuracy of ranking algorithms. Therefore, this research predicts new links in two OSNs (Facebook and Twitter) data sets through association between prime nodes using PSA. By completing OSNs through association between prime nodes using PSA, this study demonstrates that the performance of famous ranking algorithms (k-Core and PageRank) can be significantly improved." @default.
- W2885473265 created "2018-08-22" @default.
- W2885473265 creator A5021657053 @default.
- W2885473265 date "2018-05-02" @default.
- W2885473265 modified "2023-09-26" @default.
- W2885473265 title "Data prediction and recalculation of missing data in soft set / Muhammad Sadiq Khan" @default.
- W2885473265 hasPublicationYear "2018" @default.
- W2885473265 type Work @default.
- W2885473265 sameAs 2885473265 @default.
- W2885473265 citedByCount "0" @default.
- W2885473265 crossrefType "dissertation" @default.
- W2885473265 hasAuthorship W2885473265A5021657053 @default.
- W2885473265 hasConcept C10551718 @default.
- W2885473265 hasConcept C111012933 @default.
- W2885473265 hasConcept C119857082 @default.
- W2885473265 hasConcept C124101348 @default.
- W2885473265 hasConcept C140073362 @default.
- W2885473265 hasConcept C154945302 @default.
- W2885473265 hasConcept C177264268 @default.
- W2885473265 hasConcept C17744445 @default.
- W2885473265 hasConcept C199360897 @default.
- W2885473265 hasConcept C199539241 @default.
- W2885473265 hasConcept C2776359362 @default.
- W2885473265 hasConcept C2777037408 @default.
- W2885473265 hasConcept C34736171 @default.
- W2885473265 hasConcept C41008148 @default.
- W2885473265 hasConcept C58166 @default.
- W2885473265 hasConcept C58489278 @default.
- W2885473265 hasConcept C9357733 @default.
- W2885473265 hasConcept C94625758 @default.
- W2885473265 hasConceptScore W2885473265C10551718 @default.
- W2885473265 hasConceptScore W2885473265C111012933 @default.
- W2885473265 hasConceptScore W2885473265C119857082 @default.
- W2885473265 hasConceptScore W2885473265C124101348 @default.
- W2885473265 hasConceptScore W2885473265C140073362 @default.
- W2885473265 hasConceptScore W2885473265C154945302 @default.
- W2885473265 hasConceptScore W2885473265C177264268 @default.
- W2885473265 hasConceptScore W2885473265C17744445 @default.
- W2885473265 hasConceptScore W2885473265C199360897 @default.
- W2885473265 hasConceptScore W2885473265C199539241 @default.
- W2885473265 hasConceptScore W2885473265C2776359362 @default.
- W2885473265 hasConceptScore W2885473265C2777037408 @default.
- W2885473265 hasConceptScore W2885473265C34736171 @default.
- W2885473265 hasConceptScore W2885473265C41008148 @default.
- W2885473265 hasConceptScore W2885473265C58166 @default.
- W2885473265 hasConceptScore W2885473265C58489278 @default.
- W2885473265 hasConceptScore W2885473265C9357733 @default.
- W2885473265 hasConceptScore W2885473265C94625758 @default.
- W2885473265 hasLocation W28854732651 @default.
- W2885473265 hasOpenAccess W2885473265 @default.
- W2885473265 hasPrimaryLocation W28854732651 @default.
- W2885473265 hasRelatedWork W1847495902 @default.
- W2885473265 hasRelatedWork W2067741260 @default.
- W2885473265 hasRelatedWork W2094656673 @default.
- W2885473265 hasRelatedWork W2104157166 @default.
- W2885473265 hasRelatedWork W2140217547 @default.
- W2885473265 hasRelatedWork W2140392299 @default.
- W2885473265 hasRelatedWork W2183034839 @default.
- W2885473265 hasRelatedWork W2313919998 @default.
- W2885473265 hasRelatedWork W2509661528 @default.
- W2885473265 hasRelatedWork W2520379808 @default.
- W2885473265 hasRelatedWork W2577995101 @default.
- W2885473265 hasRelatedWork W271621252 @default.
- W2885473265 hasRelatedWork W2777205967 @default.
- W2885473265 hasRelatedWork W2789043468 @default.
- W2885473265 hasRelatedWork W2939002775 @default.
- W2885473265 hasRelatedWork W2945488286 @default.
- W2885473265 hasRelatedWork W2996472009 @default.
- W2885473265 hasRelatedWork W3045275400 @default.
- W2885473265 hasRelatedWork W50707603 @default.
- W2885473265 hasRelatedWork W64004365 @default.
- W2885473265 isParatext "false" @default.
- W2885473265 isRetracted "false" @default.
- W2885473265 magId "2885473265" @default.
- W2885473265 workType "dissertation" @default.