Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885478220> ?p ?o ?g. }
- W2885478220 endingPage "99" @default.
- W2885478220 startingPage "80" @default.
- W2885478220 abstract "This paper discusses the specifics of forecasting using factor-augmented predictive regressions under general loss functions. In line with the literature, we employ principal component analysis to extract factors from the set of predictors. In addition, we also extract information on the volatility of the series to be predicted, since the volatility is forecast-relevant under non-quadratic loss functions. We ensure asymptotic unbiasedness of the forecasts under the relevant loss by estimating the predictive regression through the minimization of the in-sample average loss. Finally, we select the most promising predictors for the series to be forecast by employing an information criterion that is tailored to the relevant loss. Using a large monthly data set for the US economy, we assess the proposed adjustments in a pseudo out-of-sample forecasting exercise for various variables. As expected, the use of estimation under the relevant loss is found to be effective. Using an additional volatility proxy as the predictor and conducting model selection that is tailored to the relevant loss function enhances the forecast performance significantly." @default.
- W2885478220 created "2018-08-22" @default.
- W2885478220 creator A5032642443 @default.
- W2885478220 creator A5076998581 @default.
- W2885478220 date "2019-01-01" @default.
- W2885478220 modified "2023-09-23" @default.
- W2885478220 title "Predictive regressions under asymmetric loss: Factor augmentation and model selection" @default.
- W2885478220 cites W1496327753 @default.
- W2885478220 cites W1752240835 @default.
- W2885478220 cites W1974162634 @default.
- W2885478220 cites W1978620913 @default.
- W2885478220 cites W1986008629 @default.
- W2885478220 cites W1986705681 @default.
- W2885478220 cites W1999814123 @default.
- W2885478220 cites W2000632882 @default.
- W2885478220 cites W2003113914 @default.
- W2885478220 cites W2010553818 @default.
- W2885478220 cites W2014165366 @default.
- W2885478220 cites W2025512415 @default.
- W2885478220 cites W2032650770 @default.
- W2885478220 cites W2038601479 @default.
- W2885478220 cites W2045471955 @default.
- W2885478220 cites W2060132750 @default.
- W2885478220 cites W2061698507 @default.
- W2885478220 cites W2079563517 @default.
- W2885478220 cites W2086453666 @default.
- W2885478220 cites W2093730348 @default.
- W2885478220 cites W2095467452 @default.
- W2885478220 cites W2098723749 @default.
- W2885478220 cites W2107924487 @default.
- W2885478220 cites W2110067385 @default.
- W2885478220 cites W2110697494 @default.
- W2885478220 cites W2114270587 @default.
- W2885478220 cites W2121189674 @default.
- W2885478220 cites W2127322790 @default.
- W2885478220 cites W2127483845 @default.
- W2885478220 cites W2129646843 @default.
- W2885478220 cites W2139478949 @default.
- W2885478220 cites W2144963328 @default.
- W2885478220 cites W2146661536 @default.
- W2885478220 cites W2151063158 @default.
- W2885478220 cites W2152481464 @default.
- W2885478220 cites W2157400927 @default.
- W2885478220 cites W2159706540 @default.
- W2885478220 cites W2180913125 @default.
- W2885478220 cites W2417858809 @default.
- W2885478220 cites W2890691765 @default.
- W2885478220 cites W3023877248 @default.
- W2885478220 cites W3103221895 @default.
- W2885478220 cites W3121170389 @default.
- W2885478220 cites W3121311741 @default.
- W2885478220 cites W3122285750 @default.
- W2885478220 cites W3122738207 @default.
- W2885478220 cites W3123288951 @default.
- W2885478220 cites W3124203304 @default.
- W2885478220 cites W3124660442 @default.
- W2885478220 cites W3124863455 @default.
- W2885478220 cites W3125070724 @default.
- W2885478220 cites W3125714952 @default.
- W2885478220 cites W4236290419 @default.
- W2885478220 cites W4256645166 @default.
- W2885478220 doi "https://doi.org/10.1016/j.ijforecast.2018.07.013" @default.
- W2885478220 hasPublicationYear "2019" @default.
- W2885478220 type Work @default.
- W2885478220 sameAs 2885478220 @default.
- W2885478220 citedByCount "3" @default.
- W2885478220 countsByYear W28854782202021 @default.
- W2885478220 countsByYear W28854782202022 @default.
- W2885478220 countsByYear W28854782202023 @default.
- W2885478220 crossrefType "journal-article" @default.
- W2885478220 hasAuthorship W2885478220A5032642443 @default.
- W2885478220 hasAuthorship W2885478220A5076998581 @default.
- W2885478220 hasConcept C105795698 @default.
- W2885478220 hasConcept C149782125 @default.
- W2885478220 hasConcept C27438332 @default.
- W2885478220 hasConcept C2780148112 @default.
- W2885478220 hasConcept C33923547 @default.
- W2885478220 hasConcept C41008148 @default.
- W2885478220 hasConcept C83546350 @default.
- W2885478220 hasConcept C91602232 @default.
- W2885478220 hasConcept C93959086 @default.
- W2885478220 hasConceptScore W2885478220C105795698 @default.
- W2885478220 hasConceptScore W2885478220C149782125 @default.
- W2885478220 hasConceptScore W2885478220C27438332 @default.
- W2885478220 hasConceptScore W2885478220C2780148112 @default.
- W2885478220 hasConceptScore W2885478220C33923547 @default.
- W2885478220 hasConceptScore W2885478220C41008148 @default.
- W2885478220 hasConceptScore W2885478220C83546350 @default.
- W2885478220 hasConceptScore W2885478220C91602232 @default.
- W2885478220 hasConceptScore W2885478220C93959086 @default.
- W2885478220 hasIssue "1" @default.
- W2885478220 hasLocation W28854782201 @default.
- W2885478220 hasOpenAccess W2885478220 @default.
- W2885478220 hasPrimaryLocation W28854782201 @default.
- W2885478220 hasRelatedWork W1832839239 @default.
- W2885478220 hasRelatedWork W1967159536 @default.
- W2885478220 hasRelatedWork W2027536481 @default.
- W2885478220 hasRelatedWork W2138064596 @default.